
Chapter 3
Data Analysis for Nanomaterials: Effective
Medium Approximation, Its Limits and
Implementations

Josef Humlicek

Abstract We review here basic theoretical approaches to the optical response
of nanostructured materials. We use the well established framework of Effective
medium approximation (EMA) and discuss key issues of its use. The treatment of
this extensive subject is adapted to the needs of ellipsometric/polarimetric measure-
ments on nanostructured materials. In Sects. 3.1 and 3.2 we formulate the problems
and establish notation. Then, we recall and discuss, in Sects. 3.3 and 3.4, several
well-known formulae for the effective dielectric function. Sections 3.5 and 3.6 are
devoted to a fairly detailed comparison of selected measured data with results of the
EMA models. We also assess the uncertainties involved in the EMA approach by
visualizing the differences between results of its different versions (Sect. 3.7) and
by calculating the differences from exact solutions (Sect. 3.8). Finally, Sect. 3.9 is
devoted to the discussion of possible resonant behaviour of EMA mixtures.

3.1 Introduction

Contemporary materials science provides a wealth of unique materials obtained by
a fine (nanometer-sized) mixing of different components. An example of a fairly
complex artificial nanostructure is shown in Fig. 3.1. Six layers of the nanoscale
mixture of molybdenum and SiO2, separated by very thin SiO2 spacers (bright hor-
izontal lines), are placed on the oxidized silicon substrate (the bottom part showing
the segment of 100 nm of length) and capped with the topmost SiO2 layer. Differ-
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Fig. 3.1 TEM cross section of molybdenum/SiO2 multilayer nanocomposite deposited on SiO2/Si
substrate. Courtesy of Ivo Vávra, Bratislava

ent deposition conditions of the individual Mo/SiO2 layers were chosen in order to
obtain different microstructures, seen as the changing contrast pattern of the trans-
mission electron microscopy (TEM) picture. The targeted functionality of this kind
of structures might be, for example, low-frequency electric conduction and/or optical
behaviour in infrared/visible/ultraviolet range.

In general, many fundamental and functional properties of nanocomposites can be
conveniently probed using several variants of optical spectroscopy. In particular,
using polarized light in ellipsometric measurements proves to be highly efficient. The
scheme of reflection and transmission of polarized optical wave interacting with slabs
of nanostructured materials is shown in Figs. 3.2 and 3.3. The structure of Fig. 3.2
consists of thin layers extended in the (x,y) plane and stacked along the z-direction,
which is typical of contemporary epitaxial heterostructures; that of Fig. 3.3 indicates
small particles dispersed in a matrix.

Optical fields in the (meta)materials and the corresponding far-field solutions can
be, in principle, obtained from rigorous full-wave analysis. This is usually very
tedious, and the results are accompanied by a considerable volume of unwanted
information. The fine structure of the optical fields is mostly irrelevant, since only
smooth macroscopic averages are detected in actual measurements. Thus, the obvious
replacement of mixed materials with “effective medium” can provide a plausible
solution. This approach is usually termed EMA (effective medium approximation)
or EMT (effective medium theory). The concept of EMA is very old; in fact, Maxwell
included a paragraph on the electric conduction in a mixture in his famous Treatise [1].
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Fig. 3.2 Cross section of a planar ambient-film-substrate system. The film consists of a stack of
different materials with interfaces parallel to the surface
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Fig. 3.3 Cross section of a planar ambient-film-substrate system. The film consists of nanoparticles
embedded in a matrix material

3.2 Linear Optical Response of Nanostructured Materials

Optical frequencies, ∼3 × 1011 − 3 × 1016 Hz, cover the range from far-infrared
(FIR) to vacuum-ultraviolet (VUV) spectral regions; the longest and shortest vac-
uum wavelength is about 1 mm and 10 nm, respectively. Since the atomic dimensions
are of the order of 0.1 nm, matter behaves as a continuum at the optical frequencies
and below (microwaves and radio waves). Namely, the wavelength is large enough
to prevent substantial diffraction on the atomic structure, in contrast to the shorter
wavelengths of the X-ray range. Although the discrete atomic structure of matter pro-
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duces strong spatial variations of the quantities describing optical fields, the smooth
averages at macroscopic length scales are usually detected using a light probe from
the optical range.

The nanostructured materials are mixtures of individual components, possessing
their own optical (continuum-like) behaviour. In other words, the atomic structure
of individual components enters merely a limited number of macroscopic quantities,
characteristic of the corresponding continuum. A second (sometimes called meso-
scopic) level of averaging might be useful in representing the mixture as another
continuum, with negligible diffraction on the mesoscopic structure. The possibility
to use this continuum representation is not as universal as that of bulk materials, due
to a wide range of possible sizes of the components.

The essential step in treating a mixture as a continuum consists in finding the macro-
scopic (averaged) field quantities. The actual behaviour of the mixture differs from
this approximative treatment (effective medium approximation, EMA), whenever the
structuring is not fine enough on the length scale of a single wavelength. Obviously,
the fulfilment of this condition depends on the spectral range: a mesoscopic struc-
ture with characteristic dimensions of ∼10 nm is likely to behave as a continuum in
infrared and visible, but not in ultraviolet.

Maxwell equations govern the spatial and temporal dependencies of the electromag-
netic field:

∇ × E = −∂ B/∂t, ∇ × H = ∂ D/∂t + j , ∇ · D = ρ, ∇ · B = 0. (3.1)

The electric and magnetic field quantities and their units in the SI system are the
following vectors: E [V/m], the electric intensity, H [A/m], the magnetic intensity,
D [As/m2], the electric displacement (flux density), B [Vs/m2], the magnetic dis-
placement (flux density), j [A/m2], the current density. The scalar ρ [As/m3] is the
charge density.

The linear response of matter to the monochromatic electromagnetic field, where
all of the quantities follow the harmonic time dependence of exp(−iωt) with the
angular frequency ω, is described by the constitutive relations for the displacements
and intensities,

D = ε(ω)ε0 E, B = μ0 H, (3.2)

where ε0 = 8.85×10−12 As/Vm is the vacuum permittivity, μ0 = 4 π×10−7 Vs/Am
the vacuum permeability, and ε(ω) the (dimensionless) relative permittivity. Alter-
natively, the induced current density j is a linear function of the electric intensity and
the proportionality factor, the conductivity σ , is simply related to the permittivity:

j = σ(ω)E, σ (ω) = −iω[ε(ω) − 1]ε0. (3.3)

The SI unit of conductivity is A/Vm = 1/�m. The linear response of Eqs. (3.2) and
(3.3) contains complex functions of frequency, ε = ε1 + iε2 and σ = σ1 + iσ2,
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reflecting possible phase shifts between the electric field and the induced polar-
ization/current at finite frequencies. The second of equations (3.3) is a simple
consequence of the indistinguishability of ∂ D/∂t and j in the second of Maxwell
equation (3.1) at optical frequencies.

As usual, we use the complex permittivity as the preferred response function.
However, the complex conductivity might be more appropriate for conducting struc-
tures in IR.

3.3 Average Fields and Effective Permittivity for a Small
Contrast

A simple approach to the dielectric response of a mixture is due to Landau-Lifshitz
[2]. The mixture is assumed to be finely dispersed, representing a homogeneous and
isotropic material with respect to the macroscopic field. Its effective permittivity
relates the volume-averaged displacement and intensity,

〈D〉 = εeff〈E〉, (3.4)

where the averaging volume V has to be large enough to be representative of the
mixture, and, in optical case, small in comparison with the wavelength. Using the
averages of the intensity and permittivity,

〈E〉 = (1/V )

∫
E(r)dxdydz, 〈ε〉 = (1/V )

∫
ε(r)dxdydz, (3.5)

the local field intensity and permittivity at the position r = (x, y, z) can be written as

E(r) = 〈E〉 + δE(r), ε(r) = 〈ε〉 + δε(r). (3.6)

The essential step in calculating the mean displacement,

〈D〉 = 〈(〈ε〉 + δε(r))(〈E〉 + δE(r))〉 = 〈ε〉〈E〉 + 〈δε(r)δE(r))〉, (3.7)

consists in finding the average of the product δε(r)δE(r). An approximate treat-
ment of Landau-Lifshitz uses the third of Maxwell equation (3.1) with the vanishing
charge density ρ, which relates the divergence of the displacement to positional
dependencies of the field intensity and permittivity:

∇ · D = ∇ · [(〈ε〉 + δε(r))(〈E〉 + δE(r))]
≈ 〈ε〉∇ · [δE(r)] + 〈E〉∇ · [δε(r)] = 0. (3.8)



150 J. Humlicek

The divergence of the product δε(r)δE(r) is supposed to be negligible. The second
term of the right-hand side of Eq. (3.7) is calculated in two steps. First, the spatial
average is performed over the regions of constant δε, i.e., for a given component of
the mixture. The corresponding average of δE can be obtained from its divergence

∇ · 〈δE(r)〉 = δ

δx
〈δEx (r)〉 + δ

δy
〈δEy(r)〉 + δ

δz
〈δEz(r)〉 = 3

δ

δx
〈δEx (r)〉, (3.9)

using the assumption of the isotropy of the 3-dimensional mixture. Choosing the
direction of 〈E〉 along x, we obtain from Eq. (3.8) the following relations,

3〈ε〉 δ

δx
〈δEx (r)〉 = −〈Ex (r)〉 δ

δx
〈ε(r)〉, 〈δE(r)〉 = − 1

3〈ε(r)〉 〈E(r)〉δε(r).

(3.10)

The second stage of finding the average of Eq. (3.7) is performed by multiplying the
second of Eq. (3.10) by δε, and averaging over all species in the mixture. The result
reads

〈δε(r)δE(r)〉 = − 1

3〈ε(r)〉 〈E(r)〉〈(δε(r))2〉. (3.11)

Using this in Eqs. (3.7) and (3.4), we find the resulting effective permittivity,

εeff = 〈ε〉 − 〈(δε)2〉
3〈ε〉 . (3.12)

We call the result of Eq. (3.12) the Landau-Lifshitz (LL) formula. It can be expressed
approximately in the following appealing way. Neglecting higher-order terms in the
third power of the Taylor expansion of the averaged cube root,

〈ε1/3〉3 = 〈(〈ε〉 + δε)1/3〉3 ≈ 〈ε〉 − 3〈ε〉1 · 2

3 · 6

〈(δε)2〉
〈ε〉2 , (3.13)

the right-hand side of Eq. (3.12) is recovered, i.e.,

εeff = 〈ε1/3〉3. (3.14)

This form of the approximate effective permittivity has been obtained in a differ-
ent way by Looyenga [3]; the formula of Eq. (3.14) is sometimes labeled as LLL
(Landau-Lifshitz-Looyenga). In practice, it does not bring any essential advantage
compared with the LL formula of Eq. (3.12).

The above development can be easily modified for structures of lower dimensions.
Let us assume translational invariance of the mixture along one spatial dimension (z),
with the structuring restricted to the (x,y) plane of the 2-dimensional (2D) system. The
material is uniaxial, with the optical axis along z, and the z (extraordinary) component
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of its dielectric tensor equals the volume average 〈ε〉. In order to calculate the ordinary
component, we notice that the divergence of Eq. (3.9) becomes

∇ · 〈δE(r)〉 = δ

δx
〈δEx (r)〉 + δ

δy
〈δEy(r)〉 = 2

δ

δx
〈δEx (r)〉. (3.15)

Similarly, with the structuring vanishing along z and y in a one-dimensional (1D)
mixture, the material is uniaxial with the optical axis along x, and the y and z (ordi-
nary) components of the dielectric tensor are equal to the volume average 〈ε〉. The
divergence of Eq. (3.9) is reduced to

∇ · 〈δE(r)〉 = δ

δx
〈δEx (r)〉. (3.16)

The corresponding modification of the corresponding tensor components of the effec-
tive permittivity of Eq. (3.12) is

εeff = 〈ε〉 − 〈(δε)2〉
D〈ε〉 , (3.17)

where D =3, 2, 1 for the 3D, 2D, and 1D mixtures, respectively.

Let us note that looking for an approximate representation of Eq. (3.17) using powers,
analogous to Eq. (3.14), leads to the following simple result in the 1-dimensional
(D = 1) case: the right-hand side of Eq. (3.17) is recovered when expanding

εeff |1D = 〈ε−1〉−1. (3.18)

This is actually a precise result of the long-wavelength averaging for general lamellar
structures, not restricted to the low contrast of constituents. We will use this fact later
in order to test the level of errors introduced by the assumption of the small contrast.

For the simplest mixture consisting of just two components, a and b, the averages
can be expressed explicitly in terms of their permittivities, εa and εb, and the volume
fractions, fa and fb,

fa = Va/(Va + Vb), fb = Vb/(Va + Vb) = 1 − fa ≡ f. (3.19)

Thus, the composition of binary mixtures is specified by a single parameter f, the
volume fraction of the component occupying volume Vb, with the permittivity of εb.
The average permittivity of the binary mixture is

〈ε〉 = (1 − f )εa + f εb = εa + f (εb − εa), (3.20)

the deviations from the mean are

δεa = εa − 〈ε〉 = f (εa − εb), δεb = εb − 〈ε〉 = (1 − f )(εb − εa), (3.21)
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the mean of the squared deviation is

〈(δε)2〉 = (1 − f )(δεa)2 + f (δεb)
2 = f (1 − f )(εb − εa)2, (3.22)

and the LL formula of Eq. (3.17) reads

εeff = εa + f (εb − εa) − f (1 − f )(εb − εa)2

D[εa + f (εb − εa)] . (3.23)

The approximation based on neglecting higher-order terms in the derivation of
Eqs. (3.8)–(3.17) introduces differences that are, in general, difficult to specify. We
will discuss these errors later, using partly precise solutions for selected 1D cases,
partly comparisons with predictions of the effective dielectric functions that do not
assume the low contrast.

3.4 A Collection of Mixing Rules

A mixture is isotropic in the absence of preferred directions of polarization on macro-
scopic scale. This condition is evidently not fulfilled in cases of preferential orienta-
tions of the interfaces between the components. Two extreme cases of the orientation
of aligned planar interfaces with respect to the direction of electric field can easily
be identified; they are shown in Fig. 3.4.

Applying the boundary conditions for tangential and normal components of E and H
[4], the two orientations differ in the average values of the field quantities. Namely,
Ea = Eb = 〈E〉 in the parallel case, leading to the following average value of the
displacement,

〈D〉 = (1 − f )εa Ea + f εb Eb = [(1 − f )εa + f εb]〈E〉, (3.24)
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Fig. 3.4 Cross sections of a layered structure with the parallel (left part, no screening charges at
the interfaces) and perpendicular (right part, maximum screening charge density) orientation with
respect to the electric field
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where f is the volume fraction of the component b. Thus, the effective permittivity
of Eq. (3.4) is the simple volume average of the two components,

εeff = 〈ε〉 = (1 − f )εa + f εb. (3.25)

On the other hand, normal components of the displacement D are continuous (Da =
Db = 〈D〉) across the interfaces in the perpendicular case, leading to the following
average value of the electric intensity perpendicular to the planes,

〈E〉 = (1 − f )Da/εa + f Db/εb = [(1 − f )/εa + f/εb]〈D〉. (3.26)

Consequently, the inverse of the effective permittivity along the horizontal direction is
the volume average of the inverses of the permittivities of the individual components
(i.e., the inverse permittivity is additive),

1/εeff = (1 − f )/εa + f/εb. (3.27)

The two orientations of layers in Fig. 3.4. differ in the absence/presence of screening
charges at the interfaces. Namely, a surface charge density develops at the interfaces
in the perpendicular case, which is related to the discontinuity of the electric field
intensity across the interface. On the other hand, no screening charges appear in the
parallel case. Curved interfaces lead evidently to more complex field patterns, with
positional dependence of the surface charge density.

The case of a spherical (more generally, ellipsoidal) inclusion is particularly simple,
as it allows an analytical solution [5]. Shown in Fig. 3.5 are the field lines describing
the field in and around a dielectric sphere. The inner field, produced by the applied
intensity and screening charges unevenly distributed on the surface, is constant [4]:

Eb = 3εa

εb + 2εa
Ea . (3.28)

Note that the inner field is weaker than the outer one for εb > εa , i.e., for the
inclusion more polarizable than the host material (if both permittivities are real).
Static fields are assumed in calculations of average quantities; however, the optical
case is essentially the same for the diameter of the sphere negligible with respect to
the wavelength and the penetration depth of light.

The more general case of an ellipsoid leads to similar results. Let us assume an
ellipsoid (permittivity εb, semi axes u, v, and w) with u oriented along the electric
field intensity. The field inside the ellipsoid is constant [5],

Eb = εa

(1 − Lu)εa + Luεb
Ea, (3.29)
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where

Lu = uvw

2

∞∫

0

dt

(t2 + u2)
√

(t + u2)(t + v2)(t + w2)
∈ 〈0, 1〉 (3.30)

is the depolarization factor. The three depolarization factors of any ellipsoid satisfy
the condition Lu + Lv + Lw = 1. Special cases are

Lu = Lv = Lw = 1

3
for u = v = w (sphere), (3.30a)

Lu = Lv = 1

2
, Lw = 0 for u = v, w → ∞ (cylinder), (3.30b)

Lu = 1, Lv = Lw = 0 for v = w → ∞ (slab). (3.30c)

Note that the zero depolarization inserted into Eq. (3.29) reproduces the condition
Ea = Eb for the interface parallel to the field; this occurs for the orientation of a
cylinder or a slab with the interfaces parallel to the field. On the other hand, the
maximum (unit) value of the depolarization factor describes the continuity of the
normal component of electric displacement, εa Ea = εb Eb, for a slab with its normal
oriented along the field.

The simplest version of averaging the microscopic fields (such as those in Fig. 3.5)
neglects the dipole-like field pattern in the close neighborhood of the spheres, sparsely
dispersed in the host material. Using the volume fraction f of the spheres, the average
intensity and displacement is approximately

〈E〉 ≈ (1 − f )Ea + f Eb =
[

1 − f + f 3εa

εb + 2εa

]
Ea, (3.31a)

〈D〉 ≈ (1 − f )εa Ea + f εb Eb =
[
(1 − f )εa + f 3εaεb

εb + 2εa

]
Ea . (3.31b)

E
a εa

εb

Eb

Fig. 3.5 A dielectric sphere embedded in an infinite dielectric medium under the electric field Ea
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The effective dielectric function of Eq. (3.4) is then given by the well known Maxwell
Garnett [6] formula

εeff = 〈D〉
〈E〉 = εa + f (εb − εa)

3εa

εb + 2εa − f (εb − εa)
. (3.32)

This result explained colors in glasses with nanometer-sized spherical metallic inclu-
sions as early as in 1904.

The Maxwell Garnett (MG) formula is easily generalized to a dilute mixture of
aligned ellipsoids in a host matrix as

εeff,u = εa + f (εb − εa)
εa

εa + Lu(1 − f )(εb − εa)
. (3.32a)

A mixture with randomly oriented ellipsoids is isotropic, with the scalar permittivity

εeff = εa + f (εb − εa)εa

∑
j=u,v,w

1/[εa + L j (εb − εa)]

3 − f (εb − εa)
∑

j=u,v,w
L j/[εa + L j (εb − εa)] . (3.32b)

Two limiting cases of very prolate and oblate ellipsoids are useful; the cylinders of
Eq. (3.30b) are likely to approximate the behavior of needle-like inclusions, with the
effective permittivity of the random orientation

εeff = εa + f (εb − εa)
εb + 5εa

3(εb + εa) + 2 f (εa − εb)
. (3.32c)

Using the depolarization factors of Eq. (3.30c), we obtain the effective permittivity
of disk- or platelet-shaped inclusions with random orientation,

εeff = εa + f (εb − εa)
2εb + 2εa

3εb + f (εa − εb)
. (3.32d)

An instructive treatment of mixtures can be based on a simplified microscopic model,
with the polarization of components represented by point dipoles [7]. For simple
geometries, the average values can be found analytically, and the distinction between
local field causing the polarization and experimentally accessible macroscopic (aver-
aged) field is straightforward. On the other hand, the actual induced density of dipole
moment of either electrons or atomic nuclei in condensed matter is significantly dif-
ferent from the diverging pattern of point dipoles. A discrete set of dipoles of different
polarizabilities, representing two different materials, leads to the effective dielectric
function obeying the equation

f
εb − 1

εb + 2
+ (1 − f )

εa − 1

εa + 2
= εeff − 1

εeff + 2
. (3.33)



156 J. Humlicek

Evidently, it can be viewed as a variant of Clausius-Mosotti or Lorentz–Lorenz
relation [7]. It is actually of the same form as the Maxwell Garnett formula (3.32);
the latter can easily be put in the form

f
εb − εa

εb + 2εa
= εeff − εa

εeff + 2εa
. (3.34)

In fact, introducing the permittivity εh of the host material, the following general
form

f
εb − εh

εb + 2εh
+ (1 − f )

εa − εh

εa + 2εh
= εeff − εh

εeff + 2εh
(3.35)

covers the Lorentz–Lorenz formula of Eq. (3.33) when taking εh = 1 (vacuum), and
the Maxwell Garnett formula of Eq. (3.34) with εh = εa (precisely in the spirit of the
approximate calculations of the averages of Eq. (3.31a,b). An appealing variant of
the mixing is to assume the host material to be the effective medium itself, εh = εeff.
This was suggested by Bruggeman [8], resulting in the mixing formula

f
εb − εeff

εb + 2εeff
+ (1 − f )

εa − εeff

εa + 2εeff
= 0. (3.36)

The effective permittivity solves the following quadratic equation, with one of its
two roots being physical,

2ε2
eff + εeff [(3 f − 2)εa + (1 − 3 f )εb] − εaεb = 0. (3.37)

The Bruggeman formula is symmetric with respect to interchanging the components,
which is attractive for dealing with materials of comparable volume fractions in
the mixture. Further, the way of its derivation leads to the expectation of a better
performance outside the dilute limit of Maxwell Garnett formula.

Another attractive mixing rule is known as the coherent potential formula; we recall
the form for spherical inclusions [9],

εeff = εa + f (εb − εa)
3εeff

3εeff + (1 − f )(εb − εa)
. (3.38)

As in the case of Bruggeman formula, the effective permittivity solves a quadratic
equation, with only one of its two roots being physical:

3ε2
eff + εeff [4( f − 1)εa + (1 − 4 f )εb] − (1 − f )εa(εb − εa) = 0. (3.39)

We use here the label CPA (coherent potential approximation) for the mixing formula
of Eq. (3.26). It is based, like the Bruggeman formula, on the assumption of the
spherical form of inclusions. However, the averaging procedure of field quantities is
different. For dilute mixtures of spheres (f � 1), both Bruggeman and CPA rules
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give the same expansion to the first order in f as the Maxwell Garnett formula, namely

εeff ≈ εa + f (εb − εa)
3εa

εb + 2εa
. (3.40)

For real permittivities, the slope of this linear approximation is smaller than that
of the linear interpolation between εa and εb for εb > εa and vice versa. This is
easily understandable with the help of the approximate averaging used in deriving
the Maxwell Garnett rule above. It should be noted that the corresponding expansion
found from Eq. (3.12),

εeff ≈ εa + f (εb − εa)
4εa − εb

3εa
, (3.41)

and (3.14),
εeff ≈ εa + 3 f (ε

2/3
a ε

1/3
b − εa), (3.42)

is different from that of Eq. (3.40). This is not surprising, because of different assump-
tions used in deriving the latter two mixing rules. In fact, the most important require-
ment was a small contrast of the permittivities. No specific geometry of the mixture
has been used; it should not be expected that the result valid for spherical inclusions
would be obtained.

The EMA calculations done for the spherical inclusions can be easily modified for
aligned ellipsoids, similar to the Maxwell Garnett type of averaging of Eq. (3.32a).
The resulting effective medium is anisotropic, since the screening effects depend on
the relative orientation of the electric field and the ellipsoids. An instructive case
is that of the aligned cylinders, i.e., infinitely elongated ellipsoids with a circular
cross-section. There is no screening for the field parallel to the cylinders, and the
corresponding tensor component of the effective permittivity is just the volume aver-
age of Eq. (3.25). For the field perpendicular to a dilute system of cylinders, the
two-dimensional distribution of screening charges leads to the following effective
permittivity, which is a modification of Eq. (3.34),

f
εb − εa

εb + εa
= εeff − εa

εeff + εa
, (3.43)

sometimes called Rayleigh mixing formula. Obviously, Maxwell Garnett and
Rayleigh mixing rules are two intermediate stages between the absence and maxi-
mum of screening in Eqs. (3.25) and (3.27), respectively.

Most of the rules for binary mixtures discussed above can be rewritten in the form
of explicit relations for the volume fraction f. This is convenient, since the typical
use of the effective medium approach is to estimate the composition from the known
permittivities of the components, and the measured value for the mixture. We list
in the table below several mixing formulas using the expression for the effective
permittivity and the volume fraction (Table 3.1).
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3.5 Tests of EMA: Glass Spheres in Liquids

An illustrative example of using different mixing formulas is the system of glass
spheres dispersed in liquids. The effective response has been studied experimentally
in the low (≤GHz) frequency range, using the mixture as a dielectric in a condenser or
a resonator. Even fairly large glass particles (mostly spheres) warrant the applicability
of the continuum approach, since the vacuum wavelength λvac at the frequency of
1 GHz is 0.3 m and the effective refractive index of the mixture, neff = √

( εeff), does
not exceed 10. Thus, the diameter of the glass spheres, smaller than about 1 mm, is
much smaller than the wavelength in the effective medium, λvac/neff .

First, we analyze the mixture of glass spheres in the non-polar liquid of carbon
tetrachloride; the experimental results of J. A. Reynolds quoted in [3] are shown
in Fig. 3.6, together with the long-wavelength (real) permittivity predicted by four
selected mixing formulas as a function of the volume fraction f of glass. A slightly
bowed dependence is almost coinciding for Bruggeman, Eq. (3.36), Landau-Lifshitz-
Looyenga, Eq. (3.14), and CPA, Eq. (3.38), formulas. The prediction of Maxwell
Garnett, Eq. (3.32), lies slightly below the three.

Since the mutual differences of the mixing formulas are rather small, we show their
differences from the Bruggeman model in Fig. 3.7 on an expanded scale. Except
for the Maxwell Garnett model, the effective permittivities are within the ±0.02
margins (less than ±1 % of the effective values) in the whole composition range.
Also the deviations from experimental points are fairly small, as shown in Fig. 3.8.
We have calculated the mean square deviations between the model and measured
values and listed the results in Fig. 3.8. The least mean deviation occurs for the CPA
rule, followed by the Landau-Lifshitz-Looyenga, Bruggeman and Maxwell Garnet

0.0 0.2 0.4 0.6 0.8 1.0

2.5

3.0

3.5

4.0

4.5

ε
eff

 = (1−f)ε
a
+ fε

b

1/ε
eff

 = (1−f)/ε
a
+ f/ε

b

glass   (ε
b
 = 4.594)

in CCl
4
(ε

a
 = 2.228 ) LL

CPA

MG

Brugg

ε

f

Fig. 3.6 Permittivity of glass spheres dispersed in carbon tetrachloride according to several mixing
formulas on the whole range of composition (lines); measured data for the volume fraction of glass
up to 0.35 (symbols)
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Fig. 3.7 Differences between several mixing formulas for the permittivity of glass spheres dispersed
in carbon tetrachloride, data from Fig. 3.6, and the Bruggeman formula

rules. Evidently, the experimental point for the largest value of f might be an outlier;
removing it from the data set reduces the mean square deviation of the CPA formula
to 0.0015, about a half of the value for the LLL rule.

Another representation of the data is shown in Fig. 3.9. The volume fractions were
calculated from the measured value of permittivity and those of the constituents
using the same mixing rules as above. Considering the possibility of the data point
with the largest value of f being an outlier, the agreement of Bruggeman and CPA
with the measured data is excellent. The Maxwell Garnett rule is very good for
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Fig. 3.8 Deviation of the predictions of different mixing formulas from experimental data for glass
spheres dispersed in carbon tetrachloride. The mean square deviation for the 7 measured points is
given next to the acronym of the mixing formula. The lines are guides to the eye
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small f, which is expected from the proper account of the screening charges on the
glass spheres; however, it overestimates the value of the volume fraction due to the
deficiencies of the simplified averaging of Eq. (3.31a,b). The LL rule underestimates
the lower values of f; however, it was derived for the condition of small differences
of permittivities in the mixture, not satisfied very well in the present case.

The LLL rule of Eq. (3.14) has been derived for a mixture of unspecified geometry,
with the only assumption of the isotropy and small variations of the permittivity. The
existence of screening charges on inner boundaries is hidden in the manipulation
with the divergences of Eqs. (3.8) and (3.9). The corresponding “average screening”
lies between the minimum and maximum of the planar interfaces oriented parallel
and perpendicular to the electric field, respectively. These two cases would occur
for the corresponding orientations of aligned glass platelets dispersed in CCl4, with
the tensor components of the permittivity of Eqs. (3.25) and (3.27). We compare in
Fig. 3.10 the compositional dependence resulting from Eq. (3.12), and its approxima-
tion of Eq. (3.14), with these two limiting cases. Note that the results of Eqs. (3.12)
and (3.14) differ rather markedly; this is obviously due to the large contrast of permit-
tivities of glass and carbon tetrachloride. Further, this way of showing the measured
data supports the suspicion of the presence of an outlier (for the largest volume
fraction of glass, 0.35).

Another set of experimental data, suitable for testing the EMA mixing rules, has been
collected for a dense packing of glass spheres immersed in various liquids [10]. The
volume fraction f of soda lime silicate glass (diameter 500 μm) was fixed at the value
of 0.605, the pores between the spheres were filled with different liquid immersions.
In our notation, the dielectric function of glass inclusions, εb, had the value of 7.6.
The permittivity of the immersing liquids, εa , span the range from 1 (air) to 78.5
(water, at radio frequencies of the order of 1 GHz or smaller used in the measure-
ments). Unfortunately, the uncertainties of the effective permittivity measured using
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LLL (solid line) its approximation of Eq. (3.14). Symbols: the difference of measured data from the
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the time-domain reflectometry are rather large, the estimate of accuracy quoted in
Ref. [10] is ±0.1. We have digitized the experimental points from Figs. 3.3 and 3.4
of Ref. [10]; they are shown together with the predictions of several mixing rules
in Fig. 3.11. Interestingly, the measured points are fairly close to the Maxwell Gar-
nett model for large values of εa . A plausible explanation of this fact relies on the
averaging procedure of Eq. (3.31), which neglects the fields generated by the surface
charges of the spheres. In fact, the large polarizability of the liquids should tend to
reduce the contribution of these fields to the average intensity and displacement.
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Fig. 3.11 Effective permittivity of glass spheres in different liquids. Experimental data (symbols),
and several mixing rules (lines)
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We have omitted the CPA mixing rule (which provided the best representation of the
glass-CCl4 mixture discussed above) from the comparison of Fig. 3.11. The reason
is its failure for large values of the ratio εa /εb. An indication of peculiar behavior
is linked to the possibility of vanishing denominator in the fraction of Eq. (3.38) for
εb > εa , or the indefinite expression for the volume fraction f resulting for εeff = εa /4
(see the last row of the table in paragraph 4). Shown in Fig. 3.12 are the two values of
the CPA rule of Eq. (3.38) obtained for εb = εa /4. One of the roots of the quadratic
Eq. (3.39) is εeff = εa /4; the remaining one is εeff = εa(1 − f ), coinciding with
the linear expansion of Eq. (3.40). Thus, the latter root is usable for small volume
fractions f, while it even runs out of the Wiener bounds for larger values of f.

The range of the smaller polarizabilities of the immersion liquids is shown on
expanded scales in Fig. 3.13. The CPA, Bruggeman and Landau-Lifshitz predic-
tions are fairly close to one another, while the Maxwell Garnett rule deviates from
the three. The measured points lie slightly below the lower Wiener bound for the two
largest values of εa ; the increase with increasing εa seems to be closer to that of the
CPA, Bruggeman and Landau-Lifshitz models than to the Maxwell Garnett model.

3.6 Testing EMA: Water Solutions of Sucrose

An interesting mixture suitable for the investigation of its optical properties is the
water solution of sucrose, as suggested by Feynman in his Lectures [11]. The sucrose
molecules, C12H22O11, remain stable in aqueous solutions at ordinary temperatures.
Further, due to their importance in food industry, the solutions have been measured
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extensively; reliable, comprehensive datasets in saccharimetry are readily available
[12].

Before discussing the optical properties of the solutions, we estimate the volume
fractions of their constituents based on the density (mass per unit volume) mea-
surements. The number of molecules in 1 mol of matter is the Avogadro number
NA = 6.02214 × 1023 mol−1. The mass of one solvent (water) molecule and one
solute (sucrose) molecule is mw = 18.02/NA g and ms = 342.3/NA g, respectively.
The solution is formed by mixing the masses Mw = Nwmw and Ms = Nsms of
the two molecular species, where Nw and Ns are the corresponding numbers of the
molecules. The density of the solution is

ρ = Nwmw + Nsms

V
= cwmw + csms, (3.44)

where cw and cs are the concentrations of the constituents (i.e., the numbers of
molecules per unit volume). Let us assume the total volume V is shared by the
corresponding apparent volumes, Vw and Vs , of the constituents, V = Vw + Vs .
We assume further the apparent volume of the solvent molecule to be that of the
pure solvent having the density ρw (this assumption is the better the more dilute the
solution is). Then, we can rewrite Eq. (3.44) in the following form

Vs = Nwmw + Nsms

ρ
− Nwmw

ρw
. (3.45)

Introducing the mass fraction of the solute (a convenient measure of the composition,
independent of temperature and pressure),
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fM = Nsms

Nwmw + Nsms
, (3.46)

we use Eq. (3.45) to obtain the apparent volume of one solute molecule:

V1s ≡ Vs

Ns
=

(
1

ρ
− 1 − fM

ρw

)
ms

fM
. (3.47)

Shown in Fig. 3.14 is the apparent volume of the sucrose molecule as a function of
the mass fraction, obtained from the density data from several sources. We have used
the extensive tabulation of Ref. [12] to calculate the dependence shown by the thick
solid line in Fig. 3.14. The results are in a fair agreement with the individual data
points from two other sources, taking into account the higher temperature of 25◦ C.
As expected, the determination of the apparent volume is rather poor at small mass
fractions, when the density of the solution approaches that of the solvent; two close
values are subtracted in the parentheses of Eq. (3.45) which magnifies both random
and systematic errors.

The increase of the apparent volume with increasing mass fraction indicates the for-
mation of voids adjacent to the sucrose molecules, small enough to prevent filling
with water, see the space filling model in Fig. 3.15. The presence of voids should
be easily detectable in the optical response of the solutions, provided the dielectric
response of water and sucrose molecules was only weakly dependent on the com-
position of the solution. This assumption has been tested by Feynman [11] using
the representation of the water and sucrose molecules by point dipoles, contributing
(via their polarizabilities) to the refractive index of the mixture. We will reformulate
the problem in terms of the standard EMA picture: the solution is described by the
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Fig. 3.15 Space filling model of the sucrose C12H22O11 molecule, from [15]

three-component mixture with the volume fractions fw, fs , and fv, and permittivities
εw, εs , and εv = 1 of water, sucrose and voids, respectively. We will use the tabulated
dependence of the refractive index (i.e., the square root of the permittivity) at the
sodium line λD = 589.3 nm at 20 C, covering the compositions from pure water
(fM = 0) to fM = 0.85 (85 weight percent of sucrose) [16]. The permittivity of solu-
tion increases monotonically from 1.77686 (pure water) to 2.26196 at fM = 0.85,
implying the value for the sucrose component in EMA to be below about 2.5; thus, the
contrast of the dielectric constants (that of vacuum, water and sucrose) is fairly small,
which suggests using the LL or LLL mixing rules of Eqs. (3.12) or (3.14). This choice
is further substantiated by the complex geometry of the elongated sucrose molecules
and the free volume within their clusters (the averages of the optical fields in the LL
approach are independent of the geometry).

Using the LLL mixing formula of Eq. (3.14) for the resulting permittivity ε, we arrive
at the following formula for the volume fraction of voids,

fv = ε
1/3
s − ε1/3

ε
1/3
s − 1

− fw
ε

1/3
s − ε

1/3
w

ε
1/3
s − 1

. (3.48)

The volume fraction of water is provided by the density ρ, using the same reasoning
as that in deriving Eq. (3.45):



3 Data Analysis for Nanomaterials: Effective Medium Approximation 167

0.0 0.2 0.4 0.6 0.8 1.0

0.00

0.01

0.02

0.03

0.04

0.0 0.2 0.4 0.6 0.8 1.0
-0.1

0.0

0.1

-0.1

0.0

0.1

λ
D
 (589.3 nm)

f(ρ)
v

2.466

2.46

εs = 2.47

sucrose in water
t = 20 C

f v

f
M

2.46
εs = 2.47

0.08595f
M
+0.03328f2

M
+0.00715f3

M

ε1/
3 -ε

1/
3

LL
L

, x
10

ε1/
3 -ε

1/
3

w

f
M

(msd = 1.3x10-5 )

Fig. 3.16 Volume fraction of voids in water solution of sucrose obtained using Eq. (3.48), using εs
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fw = ρ

ρw
(1 − fM ). (3.49)

The only unknown quantity in Eq. (3.48) is the permittivity εs , describing the dielec-
tric response of a continuum of sucrose molecules in a hypothetical mixture with no
water and no voids. Its value results readily from the plausible requirement of the
zero slope of the fv(fM ) dependence for fM → 0, which occurs for εs = 2.466. This
value is larger than the average of the three principal components of the dielectric
tensor of the biaxial sucrose crystal (2.427; note that Feynman [11] uses the average
of refractive indices to estimate the response of the sucrose component of the solu-
tion). Shown in Fig. 3.16 is the volume fraction of voids resulting from Eq. (3.48),
using the refractive index (i.e., the square root of the dielectric constant) at 20 C and
the wavelength of 589.3 nm given in Ref. [16]. The measured data are represented
in the inset of Fig. 3.16 together with its cubic polynomial approximation; the mean
square deviation of the two is 1.3 × 10−5 in the whole experimental range of the
mass fractions fM from zero to 0.85. Consequently, we use the polynomial also for
the extrapolation of experimental data in order to cover the whole compositional
range by the LLL model with εs equal to 2.46 (dashed line in Fig. 3.16, negative
slope of fv at fM = 0) and 2.47 (dash-dotted line in Fig. 3.16, positive slope of fv at
fM = 0).

The void fraction can also be estimated from the density ρ of the solution, using
the fixed volume of one sucrose molecule from Eq. (3.47) for fM → 0 throughout
the composition range, and attributing the increase of the apparent volume to the
presence of the voids. Assuming once more the density of water independent of the
composition, we arrive at
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f (ρ)
v = 1 − ρ

[
1

ρw
− fM

(
1

ρw
− V1s

ms

)]
. (3.50)

The resulting void fraction shown in Fig. 3.16 is in a very good agreement with that
obtained from the refractive index. Thus, the simple treatment of the packing of the
water and sucrose molecules, neglecting the changes of bond lengths and optical
polarizabilities with the composition, seems to provide consistent results.

Let us note that the assumption of averaging the microscopic fields of point dipoles
using the Clausius-Mossotti relation [11] is very good for dilute solutions. In fact,
the conceptually similar treatment of EMA described above results in the volume
fraction of voids smaller than 0.001 for the mass fraction of sucrose less than 0.32.
On the other hand, the presence of voids is clearly indicated in denser solutions, and
discrepancies of a few percent are observed in the EMA description of the dielectric
function when using the simplest two-component picture.

The concentrated sucrose solutions were studied by molecular dynamics simulations
in [17]. These calculations suggested a non-monotonic dependence of the free vol-
ume fraction on the compositions, which is absent in the data of Fig. 3.16 resulting
from both density and refractive index. A further notice concerns the temperature
dependence of Fig. 3.14: the increase of the free volume with increasing sucrose frac-
tion is steeper at higher temperatures. This indicates the role of dynamical effects in
filling the voids between clustered sucrose molecules with water.

Of course, EMA has to be used with caution. Substantial deviations from the simple
mixing are expected in the spectral range of strong absorption (of both sucrose
and water); the spectral shifts of molecular absorption bands due to the changes
of environment of each molecule when changing concentration would be absent in
the model spectra. The simplest EMA approach would also fail if it was used in
treating the light scattering by the solutions [18]. However, the predictions of EMA
described above are very good in predicting the refractive index in the transparent
range, in spite of the very small size of the sucrose molecule (V1s ∼ 0.35 nm3 at
room temperature).

3.7 Differences Between Mixing Rules for Binary
Dielectric Mixtures

The choice of a mixing rule in a particular situation need not be obvious. It is there-
fore desirable to estimate the differences between various plausible possibilities.
This is easily accomplished in the simplest case of binary mixtures possessing real
components of permittivity. Different rules provide differing compositional depen-
dences of the effective permittivity, interpolating between the two constituents. The
simplest linear interpolation is exact (in the long-wavelength limit) for layers parallel
to the electric intensity, the perpendicular orientation is properly described by addi-
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Fig. 3.17 Normalized difference of the effective permittivity of binary mixtures from that of one
of the components, εa , for εb = 1.5 εa (left panel) and εb = 10 εa (right panel). The mixing rules:
Eq. (3.25), solid line; Eq. (3.27), dashed line; Eq. (3.14), dotted line; Eq. (3.36), dash-dotted line;
Eq. (3.38), dash-dot-dotted line

tive inverse permittivities of Eq. (3.27). These two limiting cases are usually called
Wiener bounds for two-phase mixtures of any microstructure.

The Wiener bounds and the effective permittivities of three selected mixing rules are
shown in Fig. 3.17 for two values of εb/εa . We have chosen the CPA and Bruggeman
rules for spherical inclusions, and the LLL formula for a small difference of the
permittivities. For the smaller contrast, the bounds are fairly close and the three rules
are indistinguishable on the scale of the figure. However, the large relative value of
εb in the right panel of Fig. 3.17 shifts the lower bound rather significantly, since the
smaller value εa becomes more important. In addition, the remaining mixing rules
deviate markedly from each other. It should be reemphasized that the LLL rule has
been derived for small values of εb/εa ; we have included it here in order to draw
the attention to a possible “accidental” success of any mixing rule. For example, the
predictions of CPA and LLL rules coincide for f ≈ 0.29 for the ratio of permittivities
as high as 10.

The differences between the selected mixing rules are better seen on expanded (loga-
rithmic) scales of Fig. 3.18. The difference between the LLL and CPA rule (left panel
of Fig. 3.18) crosses zero at f ≈ 0.29 in a broad range of the dielectric contrasts. At
the same time, the CPA and Bruggeman rules agree within less than one percent of
the difference between the constituents.

All of the tested rules agree within a few percent of the difference between the
permittivities of the components when the latter does not exceed 10. Moreover,
the mutual agreement is much better for dilute mixtures (small values of f); this is
expected since the averaged fields become less sensitive to the properties of inclusions
and their interactions.
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3.8 Exact Solutions and EMA for Layered Structures

Layered structures of the type shown in Fig. 3.2 represent a convenient system for
evaluating quantitatively the approach of effective medium. Namely, the optical fields
can be computed exactly for incident plane waves using the scheme of transfer matri-
ces [19]; moreover, analytical results are available for derivatives of the field ampli-
tudes and ellipsometric quantities, enabling a very efficient fitting of measured data
[20]. We show here examples of exact results and their approximation using effective
medium approach. Let us start with the positional dependence of the field intensity
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Fig. 3.19 Complex amplitude of the electric intensity of a plane wave propagating along the z
axis in the layered system consisting of repeated pairs of films specified by the thickness d and the
dielectric function ε
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shown in Fig. 3.19. The wave, travelling in the z direction, is damped due to the
absorption in one of the layers in the repeated pairs. The electric intensity is parallel
to the interfaces, i.e., the angle of incidence in Fig. 3.2 is zero. The exact solution
is composed from linear combinations of plane waves in each of the layers, with
the electric intensity continuous across the interfaces and the electric displacement
undergoing step-like changes. The appropriate effective permittivity is the simple
volume average with no screening, Eq. (3.25). The damped plane wave solving the
propagation in the effective medium is indiscernible from the exact solution at the
scale of Fig. 3.19. The reason is the smallness of the thickness of individual layers
with respect to the wavelength of the optical field. The latter is about λvac/neff , with
the effective refractive index of ∼3.54 resulting from the volume average of the two
permittivities of the mixture. The detailed comparison of the exact and approximate
fields shown in Fig. 3.20 reveals a subtle relative difference of the order of 10−3.
Even this small difference could be observed via differences in interference patters
observed in light reflected from or transmitted by a film of suitable thickness made
from this model metamaterial. On the other hand, the differences diminish with
decreasing d/λ ratio.

This kind of differences of the inner fields in the metamaterial becomes fairly easily
observable in ellipsometric measurements. We show in Fig. 3.21 the spectra of the
standard ellipsometric angles computed for different values of d/λvac, where d is the
total thickness of the layered metamaterial of Fig. 3.19. We have used the repeated
pairs of the λvac/1000 films of the two different dielectric functions, kept constant
throughout the calculation of the spectra, calling the metamaterial a “superlattice”
(SL). The substrate has been chosen to be the material with the complex permittiv-
ity 16 + 2i, the more polarizable component of the mixture. Because of the large
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Fig. 3.20 A detail of the electric intensity of Fig. 3.19 obtained by solving rigorously the wave
equation in the film stack (solid line) and in the appropriate effective medium (dashed line). The
extent of neighboring individual layers is indicated by the horizontal arrows. The inset shows the
difference between the two intensities on an expanded vertical scale
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Fig. 3.21 Ellipsometric angles, (ψ, left panel) and (
, right panel), computed for a layer of
thickness d, made of the metamaterial of Fig. 3.19 with d1 = d2 = λvac/1000, at the angle of
incidence of 70◦. Solid line exact solution; dashed line effective medium approximation, using the
isotropic dielectric function along the interfaces

refractive index of the metamaterial, the optical wave is refracted very close to the z
direction, and the usual approach is to neglect the anisotropy and use the parallel com-
ponent of the dielectric function for the appropriate effective medium. The exact and
EMA calculations produce similar interference patterns, displaying a pronounced
decrease of the amplitude with increasing ratio d/λvac, due to the absorption in the
metamaterial. The EMA calculation deviates from the exact result for the following
two reasons: the neglected anisotropy, and the finite values of d1 and d2. A closer
look at the increase of the differences for decreasing wavelength identifies the second
reason as the decisive one.

In order to identify potential problems caused by a too coarse structure of the mixture
compared to the wavelength, we have performed the exact calculations of the ellipso-
metric spectra for different thicknesses of the constituent bilayers, keeping the total
thickness d of the metamaterial fixed. In other words, we have used the appropriate
number of repetitions of the basic bilayer motif, d/(d1 + d2).The results shown in
Fig. 3.22 demonstrate a fairly high sensitivity of ellipsometry to the fineness of the
mixture; as usual, the phase shift 
 is more sensitive. Note that considerable changes
from the behavior of a “true mixture” occur for the individual layer thicknesses well
below one percent of the wavelength in the effective medium.

The dramatic changes seen for thicker constituent layers are due to the interferences
in the stack of layers with the high and low index of refraction. In fact, the thickness
of individual layers close to λ/4 leads to the appearance of Bragg-like bands of
increased reflectivities and corresponding changes in the relative phase shifts.

We can readily transform these model calculations into practical guidelines for the
applicability of the effective medium (i.e., continuum) approximation of the layered
metamaterial. Namely, at the representative vacuum wavelength of the visible range,
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Fig. 3.22 Ellipsometric angles, (ψ, left panel) and (
, right panel), computed for a layer of fixed
thickness d, made of the metamaterial of Fig. 3.19 with different values of d1 = d2, at the angle of
incidence of 70◦

500 nm, we observe easily detectable (at least one tenths of a degree in ψ, and
one degree in 
) changes for the individual layer thicknesses as low as 2 nm in
this particular metamaterial. Of course, this value scales with the wavelength in the
mixture.

This level of sensitivity is related to a possible detection of surface or interface
roughness in ellipsometric measurements. In fact, the representation of the surface
roughness as the presence of an overlayer composed of the topmost material and voids
is usually a plausible approximation explaining the measured data. Similarly, the
interface roughness can be modeled by inserting a thin layer of mixed composition.
These transition layers are graded; due to the usually small extent of the grading,
the approximation by a single homogeneous layer of intermediate composition is
suitable. However, without independent information concerning the geometry of
these mixtures, values of film thicknesses and compositions derived from measured
data should be used with care.

3.9 Resonant Behavior of EMA Mixtures

When selecting properly the individual contributions of the constituents of an EMA
mixture, we can arrive at a spectacular behavior of the effective optical response;
the latter can be traced down to the spectacular behavior of local fields. We outline
here the simple cases having analytical solutions, based on the constant field inside
an isolated ellipsoid in an infinite host medium as described by Eq. (3.29). Namely,
the field intensity inside the ellipsoid becomes infinite whenever
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εb

εa
= 1 − 1

Lu
∈ (−∞, 0〉. (3.51)

According to the value of the depolarization factor Lu of Eq. (3.30), this divergence
occurs in particular in a

• sphere: u = v = w, Lu = 1/3, for εb = −2εa ;
• cylinder, field perpendicular to its axis: u = v, w → ∞, Lu =1/2, for εb = −εa ;
• slab, field perpendicular to the interface: v = w → ∞, Lu = 1, for εb = 0.

To fulfill this condition, the permittivity of the inclusion has either to vanish or to be
of the opposite sign as that of the host. Since the response functions are frequency
dependent, the diverging (in practice, very large) field intensities can only occur in
narrow spectral ranges, i.e., they exhibit resonant behavior. Let us note that the above
condition for the slab is related to the occurrence of the surface plasmon resonance,
achieved by using a thin metallic film and the obliquely incident, p-polarized wave;
the enhanced fields occur for εb ≈ 0 in the metal.

Assuming a dilute mixture (the volume fraction f � 1) of aligned ellipsoids, the
Maxwell Garnett formula of Eq. (3.32a) leads to a diverging dielectric function for

εb

εa
= 1 − 1

Lu(1 − f )
, (3.52)

which is close to the condition of diverging field of Eq. (3.51). In the case of flat
interfaces perpendicular to the field, the effective dielectric function can be expanded
in the form

εeff ≈ εa(1 + f ) − ε2
a

εb
f, (3.53)

leading to a divergence whenever εb crosses zero (in practice, its imaginary part
being small and the real part crossing zero). The spectral lineshape of the resonance,
proportional to negative inverse of εb, is almost independent of f; it is multiplied by
the squared permittivity of the host material, which is large for highly polarizable
materials.

The resonance condition of Eq. (3.52) is actually exact for the field perpendicular to
flat interfaces (i.e., Lu = 1). In fact, the effective dielectric function of Eq. (3.27)
diverges for

εb

εa
= − f

1 − f
(3.54)

at any volume fraction f. With equal volume fractions of one half (i.e., equal film
thicknesses), the resonance occurs for εb = −εa . The opposite signs of the per-
mittivitites have been achieved by a proper doping of one of the components of a
semiconductor superlattice [21], as shown in Fig. 3.23. The undoped AlInAs alloy
possesses an (almost constant) positive permittivity εa throughout the mid-infrared
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the electric field parallel and perpendicular (solid lines) to the film interfaces

(MIR) range, while the n-type InGaAs alloy has the negative-valued real part of
its permittivity, εb, up to the wavenumber of about 1130 cm−1, due to the Drude-
like contribution of free electrons. The model lineshapes of Fig. 3.23 are based on
ellipsometric measurements [22] performed on a superlattice layer (lattice-matched
to its InP substrate), exhibiting negative refraction in MIR [21]. With equal film
thicknesses, the effective medium response for the field perpendicular to the inter-
faces displays a strong resonance at 832 cm−1, and a band of negative real part of
permittivity from 836 to 1125 cm−1.

Another example of the resonance governed by Eq. (3.54) is the “transverse plasmon”
in the c-axis response of superconducting cuprates [23]. In this case, the resonant
behavior observed in the far-infrared range is more damped due to the energy losses
of normal-state carriers.

The averaging procedure pertinent to the EMA treatment of finely structured meta-
material is instructive also for the strongly anisotropic layer stack of Fig. 3.23. In
fact, it explains in simple terms the effect of negative refraction occurring in a fairly
broad range of wavenumbers [22]. The averaging procedure is shown in detail for
a selected pair of undoped (positive permittivity) and doped (negative permittivity)
layers. With an arbitrary selection of the electric field intensity in the former layer,
we find all of the intensities and displacements as follows:

Dax = εa Eax , Daz = εa Eaz (isotropic material a),

Eax = Ebx , Daz = Dbz (crossing the interface),

Dbx = εb Ebx , Ebz = Dbz/εb (isotropic material b).
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Further, the averaging assuming the thicknesses da, db, d = da +db, and the volume
fractions fa = da/d, fb = db/d = 1 − fa , leads to

〈Ex 〉 = fa Eax + fb Ebx = Eax ,

〈Ez〉 = fa Eaz + fb Ebz = ( fa + fbεa/εb)Eaz,

〈Dx 〉 = fa Dax + fb Dbx = ( faεa + fbεb)Eax ,

〈Dz〉 = fa Daz + fb Dbz = Daz = εa Eaz,

i.e., to the components of the dielectric tensor of the resulting effective medium:

〈Dx 〉 = ε||〈Ex 〉 = ( faεa + fbεb)〈Ex 〉,
〈Dz〉 = ε⊥〈Ez〉 = 1

fa/εa+ fb/εb
〈Ez〉.

This averaging procedure assumes constant fields within each layer, in other words,
film thicknesses negligible compared with the wavelength. The average flow of
energy, shown also in Fig. 3.24, occurs in the “negative” direction.

The description of the doped multilayer within the EMA framework has been tested
by performing MIR ellipsometric measurements [22]. The good agreement of the
measured and model spectra (no fitting, the nominal layer thicknesses and a guess of
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used a single Drude term with the indicated parameters. An additional model spectrum of 
 was
calculated for the total thickness of the metamaterial layer of 12 μm (dotted line)

the Drude parameters of the doped material have been used in the model) confirms
the usefulness of the EMA picture.

The individual layer thicknesses of 80 nm are small compared with the wavelength
if MIR light in the metamaterial. On the other hand, the interference pattern with the
period of about 100 cm−1 results from the coherent reflections within the total thick-
ness of 8080 nm of the superlattice. We have tested this interpretation by calculating
the model spectra of 
 for two values of the total thickness of the metamaterial
layer. Note that the spectra of 
 are folded to the range from −180 to 0◦ (due to the
rotating-analyzer measurement setup, which is unable to determine the sign of 
).
The denser interference pattern obtained for the larger total thickness confirms our
assumption (Fig. 3.25).

3.10 Conclusions

The approximate treatment of mixtures using effective medium approach is simple
and attractive, as it can capture important properties of nanostructured materials. We
would encourage using it, whenever the underlying assumptions are fulfilled. The
applicability of any specific EMA formula should be assessed carefully, and the level
of uncertainties estimated.

It might be surprising to find a consistent EMA picture of the water solutions of
sucrose in the visible spectral range, remembering the apparent volume of one sucrose
molecule of about 0.35 nm3. Further, the individual layers in a semiconductor super-
lattice might be as thick as ∼0.1 μm and still form a proper component in the EMA
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continuum in the mid-infrared range, and even provide a plausible explanation of
the negative refraction. We could easily find a failure of the EMA models for these
systems in other circumstances; however, this would not be a defect of the approach,
but that of its improper use.
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