Fundamental phenomena and applications of exciton-polariton condensates (I)

<u>L. Viña</u>

Depto. de Física de Materiales, UAM, 28049 Madrid, Spain

A. Amo (LPN-CNRS, Paris) C. Antón (LPN-CNRS, Paris) D. Ballarini (NNL-CNR Lecce) M. Baudisch (Univ. Dresden) J. Cuadra (Chalmers Univ.) C. Lingg (Berlin) D. Sanvitto (NNL-CNR Lecce) R. Spano (Swiss) G. Tosi (UNSW, Sydney) M. Klass (Würzburg Univ.)

M.D. Martín E. Rozas L. Viña E. Cancellieri (Univ. Sheffield)

A. Berceanu F.M. Marchetti E. Del Valle F.P. Laussy C. Tejedor

Collaborations

A. Lemaitre, J. Bloch

(CNRS, Francia)

D. Krizhanovskii, M. S. Skolnick

University of Sty (University of Sheffield)

(Univ. Studi di Napoli)

P.G. Savvidis

(FORTH-IESL Crete, Greece)

M. Szymanska

(University of Warwick) WARWICK

Index

Introduction

- Semiconductor laser.....VCSEL
- VCSELs & microcavities

Polaritons

Some key studies

- Polaritons in cavities, Rabi
- OPO
- BEC
- Vortices
- Superfluidity
- Patterning of cavities

Quantum cavities

- Materials
 - Atoms, structured materials, semiconductors
- Requisites
 - Cavity size comparable to characteristic λ
 - Excellent control of sizes and compositions (n)
- Physics
 - Interactions: electronics excitations electromagnetic modes
 - Condensation

Aplications

SE

- Spontaneous emission control decrease laser threshold
- Thersholdless lasers
- All optical devices
- Quantum information

Materials

Structured materials

Photonic crystal with defects

Semiconductor And Materials Company (SAMCO). Kyoto. Japan

R. André. Joseph Fourier Université. Grenoble, Francia

Semiconductor Laser (I)

Band structure

SIDAD AUT

Direct band gap

Light emission and absorption

New Frontiers in 2D materials: Approaches & Applications

RENAD AUT

Semiconductor Laser (III)

Confinement (quantum wells)

SI

RSIDAD AUTO

Semiconductor Laser (IV)

Vertical cavity surface emitting laser (VCSEL)

Advantages

- Vertical emission
- Only a longitudinal mode
- ⇒ Large efficiency/ low consumption
- Easiness of processing / testing

Laser cavity (I)

Fabry-Perot Resonator

Simplest structure to confine electromagnetic fields

Laser cavity (II)

New Frontiers in 2D materials: Approaches & Applications

Laser cavity (III)

Emitter (I)

Quantum wells

- Artificial structures
- Layers ~10 nm, with different "gap"
- Quantum confinement effects

Emitter (II)

New Frontiers in 2D materials: Approaches & Applications

New Frontiers in 2D materials: Approaches & Applications

Exciton-Polariton (I)

SI

SIDAD AUT

17

New Frontiers in 2D materials: Approaches & Applications

Theory of the Contribution of Excitons to the Complex Dielectric Constant of Crystals*†

J. J. HOPFIELD[‡] Physics Department, Cornell University, Ithaca, New York (Received July 16, 1958)

It is shown that the ordinary semiclassical theory of the absorption of light by exciton states is not completely satisfactory (in contrast to the case of absorption due to interband transitions). A more complete theory is developed. It is shown that excitons are approximate bosons, and, in interaction with the electromagnetic field, the exciton field plays the role of the classical polarization field. The eigenstates of the system of crystal and radiation field are mixtures of photons and excitons. The ordinary one-quantum optical lifetime of an excitation is infinite. Absorption occurs only when "three-body" processes are introduced. The theory includes "local field" effects, leading to the Lorentz local field correction when it is applicable. A Smakula equation for the oscillator strength in terms of the integrated absorption constant is derived.

Strongly-coupled 3D excitons and photons, excitonic polaritons are the quasi particles of the system

Exciton ω .k \longleftrightarrow photon ω .k Two coupled oscillators Field (photon) Dipole (exciton)

Exciton-Polariton (III)

Dirección crecimiento

Dispersion relations $k_{z}=2\pi/L$ Along the growth direction (confinement): $E_{\gamma}(k_{\prime\prime}) = \frac{\hbar c}{n} \left[\left(\frac{2\pi}{L} \right)^2 + k_{\prime\prime}^2 \right]^{1/2} = E_0 \left(1 + \frac{\hbar^2 c^2 k_{\prime\prime}^2}{E_0^2 n^2} \right)^{1/2}$ 1.67 1.66 $rac{c_X^2}{M_X}$ $M_P \approx |$ 1.66 1.65 Very small 1.65 1.64 Energy (eV) in-plane "mass" 1.63 1.64 $M_{\gamma} \approx 10^{-5} m_o$ Energy (eV) 1.62 1.63 1.61 $E_X(k_{//}) = \frac{\hbar^2 k_{//}^2}{2}$ 1.62 1.60 $\overline{2M_x}$ 1.61 1.59 $M_{\rm X} \sim m_0$ 1.58 1.60 2 3 5 7 0 6 4 0 2 3 5 4 6 7 $K_{\prime\prime\prime} = \frac{E}{\hbar c} \sin \theta$ $K_{\prime\prime}(10^8) \text{ cm}^{-1}$ $K_{\mu}(10^8) \text{ cm}^{-1}$

New Frontiers in 2D materials: Approaches & Applications

S

Semiconductor microcavities

Semiconductor microcavities

Semiconductor microcavities

New eigenstates
POLARITONS
$$\hat{Q}_{UPB} = c \cdot \hat{P} + d \cdot \hat{X}$$

 $\hat{Q}_{LPB} = -d \cdot \hat{P} + c \cdot \hat{X}$

New eigenstates
POLARITONS

$$\hat{Q}_{UPB} = c \cdot \hat{P} + d \cdot \hat{X}$$

 $\hat{Q}_{LPB} = -d \cdot \hat{P} + c \cdot \hat{X}$

First report polaritons in microcavities C. Weisbuch, *et al.*, Phys. Rev. Lett. **69**, 3314 (1992).

Vacuum Rabi oscillations

T. B. Norris, *et al.*, Phys. Rev. B **50**, 14663 (1994).

SIDAD AUT

V. Savona & C. Weisbuch, Phys. Rev. B 54, 10835 (1996)

SI

PL in a non-linear regime

L.S. Dang et al., Phys. Rev. Lett. 81, 3920 (1998)

Line narrowingNon-linear intensity increase

Amplification by stimulated polariton scattering

P.G. Savvidis et al. Phys. Rev. Lett. 84, 1547 (2000)

New Frontiers in 2D materials: Approaches & Applications

Stimulated Scattering

New Frontiers in 2D materials: Approaches & Applications

DI MAL RID

Parametric Oscillator

Some key studies BEC of polaritons

Some key studies BEC of polaritons • Spatial coherence

The principle of spatial correlation mapping using a Michelson interferometer

Maps of the contrast of the spatial correlations

Kasprzak et al. Nature, 443, 409 (2006)

Key samples for condensation

Why CdTe?

$$\int \pi a_B^2 n_X << 1$$

- $a_B (CdTe) = 30 \text{ Å}$ < $a_B (GaAs) = 150 \text{ Å}$ $n_X (CdTe) \sim 2 \times 10^{11} \text{ cm}^{-2}$ > $n_X (GaAs) \sim 1 \times 10^{10} \text{ cm}^{-2}$
- Binding energies (polaritonic effects)
- High temperatures

Bosonic limit

Epitaxial fabrication

Role of detuning (I)

Role of detuning (II)

SR

New Frontiers in 2D materials: Approaches & Applications

SE

SIDA AUT DE MAI RID

Non-linear regime (dynamics 1)

4 K

Non-linear regime (dynamics 2)

Stimulated Scattering, exponential increase

SEMIC

Non-linear regime (intensities)

SE

Characteristics of non-linear regime

Narrowing and shift of emission
Acceleration of the dynamics
Change in initial curvature
Exponential growth

Relaxation along dispersion relation

SEM

RENAD AUTO

Angular dependence of emission

New Frontiers in 2D materials: Approaches & Applications

Occupation along dispersion

New Frontiers in 2D materials: Approaches & Applications

Ring formation

Ring formation dynamics

New Frontiers in 2D materials: Approaches & Applications

Oscillatory behavior

SE)

1st claim of "Condensation of Semiconductor µ-cavity Exciton Polaritons"

H. Deng, et al. Science 298, 199 (2002)

New Frontiers in 2D materials: Approaches & Applications

SE

RENAD AUT

Polariton BEC in a trap R. Balili, *et al.* Science **316**, 1007 (2007)

Quantized Vortices in an Exciton-Polariton Fluid

K.G. Lagoudakis, et al. Nature Physics 4, 706 (2008)

New Frontiers in 2D materials: Approaches & Applications

SI

Coherent flow of polariton condensates

A.Amo, et al. Nature 457, 291 (2009)

Coexistence of **two fluids** with different velocities:

- $v_g = \frac{1}{\hbar} \frac{\partial E}{\partial k} > 0 \rightarrow$ Steady state CW (pump) \leftarrow large spot

Coherent flow of polariton condensates

A.Amo, et al. Nature **457**, 291 (2009)

New Frontiers in 2D materials: Approaches & Applications

SIDAD AU DEMADRID

Coherent flow of polariton condensates

A.Amo, et al. Nature 457, 291 (2009)

- The defect is observed through the Čerenkov waves present at the pump state
- Signal fluid

no scattering with the defect well defined momentum

momentum space

Superfluidity of polaritons in semiconductor microcavities A. Amo, *et al.*, Nature Physics **5**, 805 (2009)

Observation a pump polariton state at velocities above and below the speed of sound

Vortex Dynamics in an Exciton-Polariton Fluid D. Sanvitto, *et al.*, Nature Physics **6**, 527 (2010)

Vortex Dynamics in an Exciton-Polariton Fluid D. Sanvitto, *et al.*, Nature Physics **6**, 527 (2010)

2D Movies of the experiment injecting a m=1 vorticity

Real space image of the signal emission Interference pattern of the signal

Patterning of µ-cavities

Ultrafast Control and Rabi Oscillations of Polaritons L. Dominici, et al., Phys. Rev. Lett. **113**, 226401 (2014)

New Frontiers in 2D materials: Approaches & Applications

SEM

RSIDAD AUTONON DE MADRID

Ultrafast Control and Rabi Oscillations of Polaritons L. Dominici, et al., Phys. Rev. Lett. **113**, 226401 (2014)

From $p \rightarrow LP$

Annihilation

More to come

