

TECHNISCHE UNIVERSITÄT CHEMNITZ

Epitaxial silicene: Silicon in the 2D world

Patrick Vogt

Technische Universität Chemnitz, Germany

Technische Universität Berlin, Germany

Winter school: New Frontiers in 2D Materials Villard-de-Lans

January 15 - 20, 2017

Chemnitz ∙ 03. January 2017 ∙ Dmytro Solonenko M.Sc. www.tu-chemnitz.de/physik/HLPH/

Location | Saxony – City of Chemnitz

Impressions | City of Chemnitz

Center for **M**aterials, **A**rchitecture and **I**ntegration oif **N**ano-Membranes (**MAIN**)

- \cdot 43 million ϵ funding
- 4000 m² lab and office space
- \cdot for \sim 100 scientists
- •starting at the end of 2017

- nano-membranes
- 2D materials
- 2D organic layers
- hetero-structures

For technological applications and flexible electronics

Motivation: carbon-structures

Novoselov, Geim Nobel Prize in Physics **2010**

Curl, Kroto, Smalley Nobel Prize in Chemistry **1996**

- linear dispersion of the π and π^* bands close to the K points
- resembling properties of relativistic Dirac fermions
- Fermi velocity $v_F = 1.0 \times 10^6$ ms⁻¹
- But: Graphene is semi-metallic and has no bandgap!
	- Graphene is not (easily) applicable in logic and photonic devices.

Are there other similar elemental 2D materials?

Motivation: 2D materials beyond graphene?

Other elemental 2D materials?

TECHNISCHE UNIVERSITÄT **CHEMNITZ**

Schematic energy diagram

Graphite (Graphene) is the most stable form of carbon

But:

sp² hybridized silicene, germanene,... are less stable than the $sp³$ hybridized bulk forms

Solution: a mixed sp²/sp³ hybridization state

N. Takagi, *et al.*, Prog. Surf. Sci. **90**, 1 (2015).

Analogy to the dangling bond state on Si (111)

$$
E_{DB} = \frac{2q^2E_s + (1-3q^2)E_p}{1-q^2}
$$

$$
E_{\text{BB}}=\frac{(1-3q^2)E_{\text{s}}+2E_{\text{p}}}{1-3q^2}
$$

where $q = h/d$ – "buckling ratio" (buckling distance/Si-Si bond length)

Varying the buckling ratio *q*: $q = 0 \rightarrow DB=Ep$; BB=Es+2Ep \rightarrow sp² hybridization $q \sim 1/\sqrt{3}$ \rightarrow sp²/sp³ hybridization $q = 1/3$ \rightarrow DB=BB=Es+3Ep \rightarrow sp³ hybridization

- K. Takeda, K. Shiraishi, PRB **50,** 14916 (1994)
- G. G. Guzmán-Verri, et al., PRB **76**, 075131 (2007)
- S. Cahangirov et al.,PRL **102**, 236804 (2009)

S. Cahangirov et al.,PRL **102**, 236804 (2009)

TECHNISCHE UNIVERSITÄT **CHEMNITZ**

N. Takagi, *et al.*, Prog. Surf. Sci. **90**, 1 (2015).

$$
\begin{array}{ccc}\n\left|\Psi_{DB}\right\rangle & & q = h/d; \\
\left|\Psi_{BB}^A\right\rangle & & q = 0 & (\theta = 90^\circ) & \rightarrow & sp^2 \text{ hybr.} \\
\downarrow & & & q = 1/3 & \rightarrow & sp^2/\text{sp}^3 \text{ hybr.} \\
\downarrow & & & q = 1/3 & \left(\theta = 109.5^\circ\right) & \rightarrow & sp^3 \text{ hybr.}\n\end{array}
$$

The bonds have a mixed $sp²$ and $sp³$ character

Raman mode symmetries

J. Ribeiro-Soares, *et al.*, Phys. Rev. B **91**, 205421 (2015).

S. Cahangirov, *et al.*, Phys. Rev. Lett. 102, 236804 (2009)

- A-symmetry phonons: out-of-plane motion
- E-symmetry phonons: in-plane motion

- Silicene could be superconducting possibility of high Tc by B doping
- Because of the large spin-orbit coupling in Si compared to C, it is predicted to exhibit a quantum spin Hall-effect in an accessible temperature regime (10-20K)
- Silicene could be integrated easily in silicon-based nanotechnology (maybe)
- Predicted high carrier mobilities $(-2.6*10⁵ cm²V⁻¹s⁻¹)$
- Band gap opening by an electric field or functionalization
- Novel silicene-based devices:

Contrary to graphene, silicene does not exist in nature!

DOI: 10.1002/anie.201206678 **Nanomaterials Small but Strong Lessons from Chemistry for** Nanoscience** *Roald Hoffmann* **¹⁹⁸¹** *"Silicene exists and will be made only on a support of some sort, metal or semiconductor"* Angew. Chem. Int. Ed. **52**, 93 (2013) Synthesis on a nonreactive substrate preventing 3D growth

Synthesis of 2D silicene on a templates

Preparation under vacuum conditions (UHV)

1D Si nano-ribbons on Ag(110)

No silicide formation!

Ag(111) templates for the synthesis of 2D silicene

Phys. Rev. Lett. **108**, 155501 (2012) C.-L. Lin et al.,

Appl. Phys. Express, **5** (2012) 045802

A. B. Feng et al., Nano Letters **12**, 3507 (2012)

Outline

- **part 1: - epitaxial growth of silicene on Ag(111)**
- **part 2: - Vibrational properties of epitaxial silicene / Ag(111)**
	- **- Other elemental 2D materials**

Synthesis of 2D silicene on Ag(111)

Preparation of Ag(111)

• sputtering for 1h (1.5kV, 5x10⁻⁵ mbar Ar⁺) • annealing at 560°C for 30 minutes

LEED: (1x1)

Si deposition:

Si source:

• directly heated Si-wafer piece

Growth parameters:

- sample temperature: RT 450°C
- deposition rate and coverage

600nm x 600nm, $U_{bias} = -0.18$ V

• flat surface with big terraces

Growth of 2D Si-layers on Ag(111)

Growth Conditions: UHV

Growth parameters:

- sample temperature: RT 500°C
- deposition rate and coverage

The sample temperature is crucial for the formation of Siphases on Ag(111)

The formation 2D Si-layers / Ag(111) depends crucially on the temperature

TECHNISCHE UNIVERSITÄT **CHEMNITZ**

Si deposition on Ag(111) at 220°C

STM

LEED

2D growth of a 2D Si layer with a (4x4) periodicity (with respect to Ag 1x1)

STM of the Si "(4×4)" structure

The structure has a (4x4) periodicity with respect to Ag(111) In agreement with LEED

Phys. Rev. Lett. **108**, 155501 (2012)

Comparison of STM and nc-AFM

STM nc-AFM

Atomically resolved AFM show the same "flower"-like structure for the (3x3) silicene

Both images are clearly dominated by geometric factors

A. Resta et al., Sci. Rep. **3**, 2399 (2013)

(3×3)/(4×4) silicene on Ag(111): structure model

Structure model DFT results

• TE calculation: structure is energetically stable

• simulated STM image agrees well with the experimental ones

DFT results support the model

The (3×3)/(4×4) structure indicates a significant Ag-silicene interaction!

Phys. Rev. Lett. **108**, 155501 (2012)

Positron diffraction (RHEPD)

Y. Fukuya et al.,Phys. Rev. B **88**, 205413 (2013)

Structure parameters

ISCHE LINIVERSITÄT CHEMNITZ

Dynamical LEED analysis

K. Kawahara et al., Surf. Sci. **623** ,25 (2014)

Structure parameters

Diffraction methods confirm the(3×3) silicene model

"Epitaxial $(3\times3)/(4\times4)$ silicene" Free-standing silicene b=11.78 Å **TOP VIEW** d=2.32 Å SIDE VIEW $\Delta = 0.75$ Å Interaction with a substrate

TECHNISCHE UNIVERSITÄT CHEMNITZ

TOP VIEW $b = 3.83$ Å $d = 2.25 \text{ Å}$ **SIDE VIEW** $\Delta = 0.44$ Å

- geometric structure: **≈**
- electronic structure: **?**
- vibrational structure: **?**

Wigner-Seitz unit cell

Epitaxial (3x3)/(4x4) silicene:

• symmetry breaking by reconstructing

2 sub-lattices A and B

A: 12 Si atoms B: 6 Si atoms

But: it has a highly symmetric C_{6v} symmetry

Influence on the electronic properties?

ARPES measurements on the (3×3) silicene

But: DFT calculations for the (3x3) silicene do not reproduce the Dirac cones!

C.-L. Lin et al., PRL **110**, 076801 (2013), S. Huang et al. APL **102**, 133106 (2013) Z.-X. Guo et al., *J. Phys. Soc. Japan* **82**, 063714 (2013), Y.-P. Wang, H.-P: Cheng, Phys. Rev. B **88**, 125428 (2013), P. Gori et al., *JAP* **114**,113710(2013)

But: \overline{N} No \overline{k}_1 dependence: states are localization at the surface!

sp bands of bulk Ag cannot explain the ARPES results

S. Cahangirov Phys, Rev. B **88, 035432 (2013):**

:CHNISCHE LINIVERSITÄT

Explanation of the experimental dispersion by: **hybridised states**

- hybridized states are localized at the interface and give rise to a linear band
- in the absence of silicene these states disappear

hybridized sates are in agreement with the experimental observations

XAS and XES

Calculated DOS

(3×3)/(4×4) without Ag(111) (√13×√13)

without Ag(111)

(3×3)/(4×4) with Ag(111)

(√13×√13) with Ag(111)

Confirmation of the metallic character of (4x4) silicene/Ag(111)

N.W. Johnson et al., Adv. Funct. Mater. **24**, 5253 (2014)

K

Feng et al., PNAS (2016), doi pnas.1613434114

Schematic 3D plot

- Six paired Dirac cones at the edge of the Ag(111) BZ
- Does not exist for Ag(111) or free-standing silicene
- This dispersion is generated by the Ag-silicene interaction
- The band structure is not explaind by existing DFT calculations

The band structure for silicene / Ag(111) is still not fully understood

Li Tao et al., Nature Nanotechnol. **10**, 27 (2015)

"Silicene encapsulated delamination with native electrodes"

RT electrical characteristics

- ambipolar behavior, on/off ratio ~10
- mobility ~ 100 cm²V⁻¹s⁻¹

Epitaxial silicene on ZrB_2 (0001) K_{Si} Epitaxial silicene on Ir(111)

A. Fleurence, *et al.*, Phys. Rev. Lett. **108**, (2012).

L. Meng, *et al.*, Nano Lett. **13**, 685 (2013)

W. Wei, *et al.*, J. of Phys. Chem. Lett. **6**, 1065 (2015)

A possible route for quasi free-standing elemental 2D Materials

Single-layer 2D epitaxial silicene can be synthesized epitaxially on Ag(111)

• Symmetry and unit cell are modified with respect to ideal free-standing silicene as a result of the substrate interaction

- The atomic model is supported by experimental results and ab initio theory
- Hybridized states form at the silicene / Ag(111) interface linear dispersion
- Dirac cones at the K-points are not preserved
- But: the electronic structure is not fully understood yet!

Outline

- **part 1: - epitaxial growth of silicene on Ag(111)**
- **part 2: - Vibrational properties of epitaxial silicene / Ag(111)**
	- **- Other elemental 2D materials**

S. Cahangirov, *et al.*, Phys. Rev. Lett. **102**, 236804 (2009)

- A-symmetry phonons: out-of-plane motion
- E-symmetry phonons: in-plane motion

J. Ribeiro-Soares, *et al.*, Phys. Rev. B **91**, 205421 (2015)

E. Cinquanta, *et al.*, J. of Phys. Chem. C **117**, 16719 (2013).

J. Zhuang, *et al.*, Phys. Rev. B **91**, 161409(R) (2015)

In situ Raman Spectroscopy

FECHNISCHE UNIVERSITÄT CHEMNITZ

Co-formation of A-Si and (3×3) silicene on Ag(111)

Oxidation

- The silicene related modes vanish upon oxidation
- Formation of $Si₂O₃$
- The signature of a-Si remains

signature of a-Si can be substracted!

Si deposition at room temperature

• Formation of a-Si at RT

Scattering efficiency:

$$
\theta = N_i(\omega_s/c)^4 V L \mid \mathbf{e}_i \cdot (\frac{\partial \kappa}{\partial \mathbf{Q}_0} \mathbf{Q}(\omega_0)) \cdot \mathbf{e}_s \mid^2
$$

- *Ni* the number of scatterers;
- *ωs* the frequency of the scattered light;
- e_i , e_s polarization vectors of incident and scattered light
- *V* the scattering volume
- *L* the scattering length
- *Q* the displacement vector
- *κ* the electric susceptibility

Raman tensor:
$$
\Re = \frac{\partial \kappa}{\partial \mathbf{Q}}_0 \mathbf{Q}(\omega_0)
$$

$$
\overline{}
$$

$$
I \sim \mid {\bf e}_i \!\cdot\! \Re \!\cdot\! {\bf e}_s \mid^2
$$

$$
I_{Raman}(ij) \sim \sum_{s} |\alpha_{ij}|^2
$$

αij are the matrix elements of the Raman tensor

Symmetry group: C_{6v}

www.cryst.ehu.es **Raman tensors:**

$$
A(z) = \begin{pmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & b \end{pmatrix}; E_1 = \begin{pmatrix} 0 & 0 & c \\ 0 & 0 & c \\ c & c & 0 \end{pmatrix}; E_2 = \begin{pmatrix} d & -d & 0 \\ -d & -d & 0 \\ 0 & 0 & 0 \end{pmatrix}
$$

Selection rules:

A symmetry Parallel scattering configuration

 $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \times \begin{pmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & b \end{pmatrix} \times \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = a^2$

Crossed scattering configuration

$$
\left| \left(\begin{array}{c} 1 \\ 0 \\ 0 \end{array} \right) \times \left(\begin{array}{ccc} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & b \end{array} \right) \times \left(\begin{array}{c} 0 \\ 1 \\ 0 \end{array} \right) \right|^2 = \mathbf{0}
$$

Villard-de-Lans January 2017 ∙ Patrick Vogt 44

E symmetry Parallel scattering configuration

 $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \times \begin{pmatrix} d & -d & 0 \\ -d & -d & 0 \\ 0 & 0 & b \end{pmatrix} \times \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = d^2$

Crossed scattering configuration

$$
\left(\begin{array}{c}1\\0\\0\end{array}\right)\times\left(\begin{array}{ccc}d&-d&0\\-d&-d&0\\0&0&b\end{array}\right)\times\left(\begin{array}{c}0\\1\\0\end{array}\right)\right|^2=\left(\begin{array}{c}-d\end{array}^2
$$

Polarization-dependent Raman measurements

The observed Raman modes follow very clearly the selection rules

Epitaxial silicen / Ag(111) has:

- 2 A-modes: 176 cm $^{-1}$ and 216 cm $^{-1}$
- 1 E_{2g} -mode at 514 cm $^{-1}$

Vibrational properties of epitaxial silicene: DFT

2D Mater. **4**, 15008 (2017)

- A-symmetry phonons: out-of-plane motion
- E-symmetry phonons: in-plane motion

2D Mater. **4**, 15008 (2017)

Structural phase transition of (3×3) silicene

CHEMNITZ

In situ Raman Thermal coefficient

- The thermal coefficient of the E-mode is clearly larger than the L(T)O
- Similar to: graphene : 0.016 K $\text{-}1 \rightarrow$ diamond: 0.0078 K $\text{-}1 \text{cm}^{-1}$

The *in situ* Raman results confirm the 2D character of epitaxial (3×3) silicene/Ag(111)

- out-of-plane A-modes
- comparison to theory results
- •Temperature dependence
- 2D/3D phase transition at \sim 300 $^{\circ}$ C

Outline

- **part 1: - epitaxial growth of silicene on Ag(111)**
- **part 2: - Vibrational properties of epitaxial silicene / Ag(111)**
	- **- Other elemental 2D materials**

Elemental 2D Materials

Villard-de-Lans January 2017 ∙ Patrick Vogt 52

⊞ TECHNISCHE UNIVERSITÄT **CHEMNITZ**

Phosphorene

100

50

 Ω

 Ω

5

10

Free-standing 2D black phosphorus

H. Liu, *et al.*, ACS Nano **8**, 4033 (2014)

1 µm

Blue phosphorus on Au(111)

J.L. Zhang, *et al.*, Nano Letters **16**, 4903 (2016)

Villard-de-Lans January 2017 ∙ Patrick Vogt 53

 $= 0.85$ nm

20

ΔΔ

25

30

Its mobility is 4x higher than $MoS₂$

15

Thickness (nm)

Germanene/Au(111) Dávila et al. New J. Phys. **16**, 095002 (2014)

√7×√7 germanene 00-00-00-00-00-0

comparison with theory

Derivaz et al., Nano Lett. **15**, 2510 (2015) Germanene/Al(111)

STM

 $V = 1.3V$

3×3 germanene

comparison with theory

Expected properties of stanene

- Very strong effective spin-orbit coupling \rightarrow topologically non trivial with a Quantum Spin Hall Effect markedly above room temperature
	- Y. Xu et al., PRL **111**, 136804 (2013)
- High Tc superconductivity?

Stanene / $Bi₂Te₃(111)$

```
Zhu et al. Nature Mat.14 1020 (2015)
```


And: 3D topological states were observed for α-Sn(001) / InSb Barfuss et al. PRL.**111**, 157205 (2015) Ohtsubo et al. PRL.**111**, 216401 (2015)

Stanene could provide topological insulating states

A.J. Mannix, *et al.*, Science **350**, 1513 (2015).

Topological properties of 2D materials

Thank you for your attention!