

TECHNISCHE UNIVERSITÄT CHEMNITZ

Epitaxial silicene: Silicon in the 2D world

Patrick Vogt

Technische Universität Chemnitz, Germany

Technische Universität Berlin, Germany

Winter school: New Frontiers in 2D Materials Villard-de-Lans

January 15 - 20, 2017

Location | Saxony – City of Chemnitz

Impressions | City of Chemnitz

Center for Materials, Architecture and Integration oif Nano-Membranes (MAIN)

- 43 million € funding
- 4000 m² lab and office space
- for ~100 scientists
- •starting at the end of 2017

- nano-membranes
- 2D materials
- 2D organic layers
- hetero-structures

For technological applications and flexible electronics

Motivation: carbon-structures

Novoselov, Geim Nobel Prize in Physics 2010

Curl, Kroto, Smalley Nobel Prize in Chemistry 1996

- linear dispersion of the π and π^* bands close to the K points
- resembling properties of relativistic Dirac fermions
- Fermi velocity v_F = 1.0 × 10⁶ ms⁻¹
- But: Graphene is semi-metallic and has no bandgap!
 - Graphene is not (easily) applicable in logic and photonic devices.

Are there other similar elemental 2D materials?

Motivation: 2D materials beyond graphene?

Other elemental 2D materials?

TECHNISCHE UNIVERSITÄT CHEMNITZ

Schematic energy diagram

Graphite (Graphene) is the most stable form of carbon

But:

sp² hybridized silicene, germanene,... are less stable than the sp³ hybridized bulk forms

Solution: a mixed sp²/sp³ hybridization state

N. Takagi, et al., Prog. Surf. Sci. 90, 1 (2015).

Analogy to the dangling bond state on Si (111)

$$E_{DB} = \frac{2q^2E_s + (1 - 3q^2)E_p}{1 - q^2}$$

$$E_{BB} = \frac{(1 - 3q^2)E_s + 2E_p}{1 - 3q^2}$$

where **q** = **h/d** – "buckling ratio" (buckling distance/Si-Si bond length)

Varying the buckling ratio q: $q = 0 \rightarrow DB=Ep; BB=Es+2Ep \rightarrow sp^2$ hybridization $q \sim 1/\sqrt{3} \rightarrow DB=BB=Es+3Ep \rightarrow sp^3$ hybridization

- K. Takeda, K. Shiraishi, PRB **50**, 14916 (1994)
- G. G. Guzmán-Verri, et al., PRB 76, 075131 (2007)
- S. Cahangirov et al., PRL 102, 236804 (2009)

S. Cahangirov et al., PRL **102**, 236804 (2009)

CHEMNITZ

N. Takagi, et al., Prog. Surf. Sci. 90, 1 (2015).

The bonds have a mixed sp² and sp³ character

Raman mode symmetries

J. Ribeiro-Soares, et al., Phys. Rev. B 91, 205421 (2015).

S. Cahangirov, et al., Phys. Rev. Lett. 102, 236804 (2009)

- A-symmetry phonons: out-of-plane motion
- E-symmetry phonons: in-plane motion

- Silicene could be superconducting possibility of high Tc by B doping
- Because of the large spin-orbit coupling in Si compared to C, it is predicted to exhibit a quantum spin Hall-effect in an accessible temperature regime (10-20K)
- Silicene could be integrated easily in silicon-based nanotechnology (maybe)
- Predicted high carrier mobilities (~2.6*10⁵ cm²V⁻¹s⁻¹)
- Band gap opening by an electric field or functionalization
- Novel silicene-based devices:

1981

Contrary to graphene, silicene does not exist in nature!

DOI: 10.1002/anie.201206678

Small but Strong Lessons from Chemistry for Nanoscience** Roald Hoffmann "Silicene exists and will be made only on a support of some sort, metal or semiconductor" Angew. Chem. Int. Ed. 52, 93 (2013) I Synthesis on a nonreactive substrate preventing 3D growth

Synthesis of 2D silicene on a templates

Preparation under vacuum conditions (UHV)

1D Si nano-ribbons on Ag(110)

No silicide formation!

Ag(111) templates for the synthesis of 2D silicene

Phys. Rev. Lett. 108, 155501 (2012)

C.-L. Lin et al., Appl. Phys. Express, **5** (2012) 045802

A. B. Feng et al., Nano Letters 12, 3507 (2012)

- part 1: epitaxial growth of silicene on Ag(111)
- part 2: Vibrational properties of epitaxial silicene / Ag(111)
 - Other elemental 2D materials

Synthesis of 2D silicene on Ag(111)

Preparation of Ag(111)

sputtering for 1h (1.5kV, 5x10⁻⁵ mbar Ar⁺)
annealing at 560°C for 30 minutes

LEED: (1x1)

Si deposition:

Si source:

directly heated Si-wafer piece

Growth parameters:

- sample temperature: RT 450°C
- deposition rate and coverage

600nm x 600nm,U_{bias} = - 0.18 V

flat surface with big terraces

Growth of 2D Si-layers on Ag(111)

Growth Conditions: UHV

Growth parameters:

- sample temperature: RT 500°C
- deposition rate and coverage

The sample temperature is crucial for the formation of Siphases on Ag(111)

The formation 2D Si-layers / Ag(111) depends crucially on the temperature

TECHNISCHE UNIVERSITÄT CHEMNITZ

Si deposition on Ag(111) at 220°C

STM of the Si "(4×4)" structure

The structure has a (4x4) periodicity with respect to Ag(111) In agreement with LEED

Phys. Rev. Lett. 108, 155501 (2012)

Comparison of STM and nc-AFM

nc-AFM

Atomically resolved AFM show the same "flower"-like structure for the (3x3) silicene

Both images are clearly dominated by geometric factors

A. Resta et al., Sci. Rep. 3, 2399 (2013)

(3×3)/(4×4) silicene on Ag(111): structure model

Structure model

DFT results

• TE calculation: structure is energetically stable

• simulated STM image agrees well with the experimental ones

DFT results support the model

The (3×3)/(4×4) structure indicates a significant Ag-silicene interaction!

Phys. Rev. Lett. 108, 155501 (2012)

Positron diffraction (RHEPD)

Y. Fukuya et al., Phys. Rev. B 88, 205413 (2013)

Structure parameters

TECHNISCHE UNIVERSITÄT CHEMNITZ

· · · ·	Δ (Å)	d (Å)	α (°)	β (°)
This study	0.83	2.14	112	119
Our values	0.78	2.17	110	118

Dynamical LEED analysis

K. Kawahara et al., Surf. Sci. 623 ,25 (2014)

 Structure parameters

 Δ (Å)
 d (Å)
 Si-Si (nm)

 This study
 0.74 - 0.77
 2.18
 0.23

 Our values
 0.78
 2.17
 0.23

Diffraction methods confirm the(3×3) silicene model

"Epitaxial $(3\times3)/(4\times4)$ silicene" b=11.78 Å TOP VIEW d=2.32 Å SIDE VIEW ∆=0.75 Å Interaction with a substrate

TECHNISCHE UNIVERSITÄT CHEMNITZ

Free-standing silicene

- geometric structure: ≈
- electronic structure:

?

?

vibrational structure:

Wigner-Seitz unit cell

Epitaxial (3x3)/(4x4) silicene:

• symmetry breaking by reconstructing

2 sub-lattices A and B

A: 12 Si atoms B: 6 Si atoms

But: it has a highly symmetric C_{6v} symmetry

ARPES measurements on the (3×3) silicene

But: DFT calculations for the (3x3) silicene do not reproduce the Dirac cones!

C.-L. Lin et al., PRL 110, 076801 (2013), S. Huang et al. APL 102, 133106 (2013)
Z.-X. Guo et al., J. Phys. Soc. Japan 82, 063714 (2013),
Y.-P. Wang, H.-P: Cheng, Phys. Rev. B 88, 125428 (2013), P. Gori et al., JAP 114, 113710(2013)

But: No k_{\perp} dependence: states are localization at the surface!

sp bands of bulk Ag cannot explain the ARPES results

S. Cahangirov Phys, Rev. B 88, 035432 (2013):

Explanation of the experimental dispersion by: hybridised states

- hybridized states are localized at the interface and give rise to a linear band
- in the absence of silicene these states disappear

hybridized sates are in agreement with the experimental observations

3-(a)

3-(b)

85

2.

Intensity [Arbitrary Units]

-15 -10 -5

XAS and XES

0

 $(\sqrt{7}x\sqrt{7})/(\sqrt{13}x\sqrt{13})$ — (3x3)/(4x4)

Freestanding

Calc.

Exp.

Ref.

0

XES XAS

5 10 _-2 0 2

Calculated DOS

(3×3)/(4×4) without Ag(111)

 $(\sqrt{13}\times\sqrt{13})$ without Ag(111)

(3×3)/(4×4) with Ag(111)

 $(\sqrt{13} \times \sqrt{13})$ with Ag(111)

Confirmation of the metallic character of (4x4) silicene/Ag(111)

N.W. Johnson et al., Adv. Funct. Mater. 24, 5253 (2014)

Si

SiO.

100 103

Villard-de-Lans January 2017 · Patrick Vogt

Epitaxial Silicene

90 95 100 100 105 110

Emission/Excitation Energy [eV]

K

Feng et al., PNAS (2016), doi pnas.1613434114

Schematic 3D plot

- Six paired Dirac cones at the edge of the Ag(111) BZ
- Does not exist for Ag(111) or free-standing silicene
- This dispersion is generated by the Ag-silicene interaction
- The band structure is not explaind by existing DFT calculations

The band structure for silicene / Ag(111) is still not fully understood

Li Tao et al., Nature Nanotechnol. **10**, 27 (2015)

"Silicene encapsulated delamination with native electrodes"

RT electrical characteristics

- ambipolar behavior, on/off ratio ~10
- mobility ~ 100cm²V⁻¹s⁻¹

Epitaxial silicene on $ZrB_2(0001)$

A. Fleurence, et al., Phys. Rev. Lett. 108, (2012).

Epitaxial silicene on Ir(111)

L. Meng, et al., Nano Lett. 13, 685 (2013)

W. Wei, *et al.*, J. of Phys. Chem. Lett. **6**, 1065 (2015)

A possible route for quasi free-standing elemental 2D Materials

Single-layer 2D epitaxial silicene can be synthesized epitaxially on Ag(111)

• Symmetry and unit cell are modified with respect to ideal free-standing silicene as a result of the substrate interaction

- The atomic model is supported by experimental results and ab initio theory
- Hybridized states form at the silicene / Ag(111) interface
 linear dispersion
- Dirac cones at the K-points are not preserved
- But: the electronic structure is not fully understood yet!

- part 1: epitaxial growth of silicene on Ag(111)
- part 2: Vibrational properties of epitaxial silicene / Ag(111)
 - Other elemental 2D materials

S. Cahangirov, et al., Phys. Rev. Lett. 102, 236804 (2009)

- A-symmetry phonons: out-of-plane motion
- E-symmetry phonons: in-plane motion

J. Ribeiro-Soares, et al., Phys. Rev. B 91, 205421 (2015)

J. Zhuang, *et al.*, Phys. Rev. B **91**, 161409(R) (2015)

Villard-de-Lans January 2017 · Patrick Vogt

38

In situ Raman Spectroscopy

- Spectral resolution: ~ 3.3 cm⁻¹

TECHNISCHE UNIVERSITÄT CHEMNITZ

Co-formation of A-Si and (3×3) silicene on Ag(111)

Oxidation

- The silicene related modes vanish upon oxidation
- \rightarrow Formation of Si₂O₃
- The signature of a-Si remains

signature of a-Si can be substracted!

Si deposition at room temperature

Formation of a-Si at RT

Scattering efficiency:

$$\theta = N_i (\omega_s/c)^4 V L \mid \mathbf{e}_i \cdot (\frac{\partial \kappa}{\partial \mathbf{Q}_0} \mathbf{Q}(\omega_0)) \cdot \mathbf{e}_s \mid^2$$

- N_i the number of scatterers;
- $\omega_{\rm s}$ the frequency of the scattered light;
- \mathbf{e}_{i} , \mathbf{e}_{s} polarization vectors of incident and scattered light
- V the scattering volume
- L the scattering length
- **Q** the displacement vector
- κ the electric susceptibility

Raman tensor:
$$\Re = \frac{\partial \kappa}{\partial \mathbf{Q}_0} \mathbf{Q}(\omega_0)$$

$$I \sim |\mathbf{e}_i \cdot \Re \cdot \mathbf{e}_s|^2$$

$$I_{Raman}(ij) \sim \sum_{s} |\alpha_{ij}|^2$$

 α_{ii} are the matrix elements of the Raman tensor

Symmetry group: C_{6v}

Raman tensors:

www.cryst.ehu.es

$$A(z) = \begin{pmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & b \end{pmatrix}; E_1 = \begin{pmatrix} 0 & 0 & c \\ 0 & 0 & c \\ c & c & 0 \end{pmatrix}; E_2 = \begin{pmatrix} d & -d & 0 \\ -d & -d & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Selection rules:

A symmetry Parallel scattering configuration

 $\left| \begin{pmatrix} 1\\0\\0 \end{pmatrix} \times \begin{pmatrix} a & 0 & 0\\0 & a & 0\\0 & 0 & b \end{pmatrix} \times \begin{pmatrix} 1\\0\\0 \end{pmatrix} \right|^2 = a^2$

Crossed scattering configuration

$$\left| \begin{pmatrix} 1\\0\\0 \end{pmatrix} \times \begin{pmatrix} a & 0 & 0\\0 & a & 0\\0 & 0 & b \end{pmatrix} \times \begin{pmatrix} 0\\1\\0 \end{pmatrix} \right|^2 = 0$$

Villard-de-Lans January 2017 · Patrick Vogt

E symmetry Parallel scattering configuration

$$\left| \begin{pmatrix} 1\\0\\0 \end{pmatrix} \times \begin{pmatrix} d&-d&0\\-d&-d&0\\0&0&b \end{pmatrix} \times \begin{pmatrix} 1\\0\\0 \end{pmatrix} \right|^2 = d^2$$

Crossed scattering configuration

$$\begin{pmatrix} 1\\0\\0 \end{pmatrix} \times \begin{pmatrix} d&-d&0\\-d&-d&0\\0&0&b \end{pmatrix} \times \begin{pmatrix} 0\\1\\0 \end{pmatrix} \Big|^2 = (-d)^2$$

Polarization-dependent Raman measurements

The observed Raman modes follow very clearly the selection rules

Epitaxial silicen / Ag(111) has:

- 2 A-modes: 176 cm⁻¹ and 216 cm⁻¹
- 1 E_{2g}-mode at 514 cm⁻¹

Vibrational properties of epitaxial silicene: DFT

2D Mater. 4, 15008 (2017)

- A-symmetry phonons: out-of-plane motion
- E-symmetry phonons: in-plane motion

2D Mater. 4, 15008 (2017)

Structural phase transition of (3×3) silicene

In situ Raman

CHEMNITZ

Thermal coefficient

- The thermal coefficient of the E-mode is clearly larger than the L(T)O
- Similar to: graphene : 0.016 K⁻¹cm⁻¹ → diamond: 0.0078 K⁻¹cm⁻¹

- The in situ Raman results confirm the 2D character of epitaxial (3×3) silicene/Ag(111)
 - out-of-plane A-modes
 - comparison to theory results
 - •Temperature dependence
 - 2D/3D phase transition at ~ 300°C

- part 1: epitaxial growth of silicene on Ag(111)
- part 2: Vibrational properties of epitaxial silicene / Ag(111)
 - Other elemental 2D materials

And the University Chiller

Villard-de-Lans January 2017 · Patrick Vogt

Ê

TECHNISCHE UNIVERSITÄT CHEMNITZ

Free-standing 2D black phosphorus

TECHNISCHE UNIVERSITÄT CHEMNITZ

Band gap: 1.45 eV

H. Liu, *et al.*, ACS Nano **8**, 4033 (2014)

Blue phosphorus on Au(111)

Band gap: 1.1 eV

J.L. Zhang, *et al.*, Nano Letters **16**, 4903 (2016)

Outlook: Synthesis of germanene

Germanene/Au(111) Dávila et al. New J. Phys. 16, 095002 (2014)

√7×√7 germanene

comparison with theory

Germanene/Al(111) Derivaz et al., Nano Lett. 15, 2510 (2015)

V = 1.3V

3×3 germanene

comparison with theory

Expected properties of stanene

- Very strong effective spin-orbit coupling → topologically non trivial with a Quantum Spin Hall Effect markedly above room temperature
 Y. Xu et al., PRL 111, 136804 (2013)
- High Tc superconductivity?

Stanene / Bi₂Te₃(111)

```
Zhu et al. Nature Mat.14 1020 (2015)
```

STM

Model

And: 3D topological stateswere observed for α-Sn(001) / InSbBarfuss et al. PRL.111, 157205 (2015)Ohtsubo et al. PRL.111, 216401 (2015)

Stanene could provide topological insulating states

A.J. Mannix, et al., Science 350, 1513 (2015).

Topological properties of 2D materials

Thank you for your attention!