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Wikipedia: 
“Spintronics is the study of the intrinsic spin of the electron and its associated magnetic 
moment, in addition to its fundamental electronic charge, in solid-state devices.” 

http://www.rpip.tohoku.ac.jp
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• CPU (central processing unit) speed = instructions per second
- determined by a) clock rate

b) instructions per clock

Electronics

• does not increase since 2005 <= heat dissipation
a) clock rate



• scales as a square root of number of transistors on a chip=> miniaturization 
of transistors

• described by Moore’s Law:

“Number of transistors 
per chip is doubling 
every two years.”

b) instructions per clock



• February 2016: M.M. Waldrop: “More than Moore”, Nature 530, 144–147.

• Moore’s Law: self-fulfilling prophecy
- new chips followed the law because the industry made sure that they did 



Spin

spin = intrinsic angular momentum which has associated magnetic moment
- it has magnitude: for electron 

direction: depicted by an arrow

- frequently depicted as a spinning ball

- in external magnetic field B0 electrons with opposite spins have 
different energy

spin bar magnet




2
1

m
e

B 2


B … Bohr magneton

ge … g-factor of electron



Spintronic applications: Commercially available

• introduced by IBM in 1997
=> data storage density increase by 100 % annually

HDD read heads





• based on Giant Magnetoresistence (GMR)
- Nobel Prize in Physics in 2007

Albert Fert (France) Peter Grünberg (Germany)
Phys. Rev. Lett. 61, 2472 (1988). Phys. Rev. B 39, 4828 (1989).

small resistance large resistance

HDD read heads (1997)



• magnetic tunnel junction: fast and nonvolatile
• data readout: tunneling anisotropic magnetoresistance

Magnetic random-access memory (MRAM)

Spintronic applications: Commercially available



• data readout: tunneling anisotropic magnetoresistance
• data writing: first generation: magnetic field 

- March 2007: Freescale Semiconductor, 4 MB chip MR2A16A

Science 296, 246 (2002).

Magnetic random-access memory (MRAM)



• data readout: tunneling anisotropic magnetoresistance
• data writing: second generation: ST-MRAM

- November 2012: Everspin Technologies, 64 MB chip EMD3D064M
(August 2016: 256 MB chip)

• STT: non-relativistic effect
• angular momentum of a spin-polarized electrical current entering 
ferromagnet from external polarizer is transferred to the magnetization

spin-transfer torque (STT)

http://www.klaeui-lab.de

Magnetic random-access memory (STT-MRAM)



Magnetic random-access memory (MRAM)

Spintronic applications: Under development

• data readout: tunneling anisotropic magnetoresistance
• data writing: third generation: spin Hall effect

spin Hall effect (SHE)
• accumulation of spin polarization on edges of paramagnetic sample
(due to spin-orbit interaction)

• observed in 2004 in semiconductors and later in metals
- very strong effective

magnetic fields

Science 306, 1910 (2004).



Magnetic random-access memory (SHE-MRAM)
• data readout: tunneling anisotropic magnetoresistance
• data writing: third generation: spin Hall effect

• MRAM switching by a combination of SHE a STT:
- in-plane current in the film  perpendicular spin-current due to SHE 
 switching of MRAM due to STT STT-MRAM

SHE-MRAM

Science 336, 555-558 (2012).
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Race-track memory

Spintronic applications: Under development

• domain walls are moved by STT (v > 100 m/s) 
• developed by IBM (S. S. P. Parkin)

Science 320, 190 (2008). 



Spin transistor: proposal

Spintronic applications: Under development

• spin field effect transistor (spin-FET): Appl. Phys. Lett. 56, 665 (1990).
- rotation of electron spin due to spin-orbit interaction (voltage controlled)

• faster

• less energy needed

• reconfigurable

Sci. Am. 286, 67-73 (2002).



Spin transistor: demonstration

Spintronic applications: Under development

• spin-injection Hall effect (SIHE):
- rotation of electron spin due to

spin-orbit interaction
- can be measured by electrodes J. Wunderlich a kol., Nat. Phys. 6, 675 (2009). 

• optical injection of spin-polarized electrons in GaAs:
- due to selection rules

J. Wunderlich a kol., Science 330, 1801 (2010). 

• gate changes the precession period



(pseudo)spin MOSFET

Spintronic applications: Under development

• combination of Si-based MOSFET transistors with MRAM technology:

conventional CMOS architecture

MRAM

“logic in memory” architecture 

- memory much closer to logic
 fast communication between logic and memory
 large static and dynamic energy saving 

(“normally-off / instant-on computing”)



Fast nonvolatile data storage

Spintronic applications: Research directions

• ultrafast technology gap (for permanent data storage):
- CPU: produces data at frequency ~2 GHz  500 ps
- HDD: data storage ~ ns - ms

HDD
• data stored by magnetic field



Femtomagnetism
• ultrafast (sub-ps) manipulation with magnetization by femtosecond 

laser pulses:
- investigation/modification of magnetic materials on a time scale 

shorter than that of exchange or spin-orbit interactions

Rev. Mod. Phys. 82, 2731 (2010).



Phys. Rev. Lett. 76, 4250 (1996).

1996 – demagnetisation in nickel induced by 60 fs pulses
- sub-ps reduction of magnetic moment

=> femtomagnetism
- various mechanisms responsible …

Femtomagnetism

1. Modification of magnetization magnitude

2005- inverse Faraday effect

Nature 435, 655 (2005).

Faraday rotation:
 … magneto-optical susceptibility

=> light acts as effective magnetic field
- direction determined by light helicity

2. Modification of magnetization direction



Femtomagnetism

Search for optical analogues of electrical torques

• non-relativistic effect
• angular momentum of a spin-polarized

electrical current entering ferromagnet
from external polarizer is transferred 
to the magnetization

spin-transfer torque (STT):

http://www.klaeui-lab.de

spin-orbit torque (SOT):
• relativistic (spin-orbit) effect
• no external polarizer is needed 

(present in uniform ferromagnet)
• initially unpolarized current is spin-

polarized due to spin-orbit interaction
=> torque on magnetization

s

no current

M
 s

with current

Why use optical pulses? Same physics but much faster!



Optical torques: experimental observation
• material: ferromagnetic semiconductor Ga1-xMnxAs

- partial replacement of non-magnetic atoms by magnetic ones
- direct-gap semiconductor => photoinjection of cariers
- strong exchange coupling between carriers and Mn
- large magneto-optical activity
- Curie temperature Tc ≤ 200 K

P. Nemec et al., Nature Physics 8, 411 (2012).
N. Tesarova et al., Nature Photonics 7, 492 (2013).

• method: time-resolved magneto-optical experiment
• strong circularly-polarized pump pulse

=> photo-injection of spin-polarized electrons

• weak probe pulse with linear polarization
- rotation of polarization plane

• time delay between pump and probe pulses 
=> dynamics of pump-induced 

magnetization change

pump

probe



Optical torques: experimental observation

Nature Physics 8, 411 (2012).

• absorption of circularly-polarized pulse       
=> spin-polarized electrons

• coupled precession dynamics of 
magnetization M and carrier spin s

optical spin-transfer torque

0 500 1000 1500
-25

0

25

  

M
O

 si
gn

al
 (

ra
d)

Time delay (ps)

 +

Nature Photonics 7, 492 (2013).

optical spin-orbit torque

• absorption of pulse => non-equilibrium 
concentration of holes

spin-orbit interaction=> non-equilibrium 
spin-polarization - misaligned relative to M
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Ferromagnets

Spintronics from material perspective

• ordered materials with M0
• good for direct manipulation by magnetic field
• bad for retention with magnetic field around
• not well compatible with semiconductors

- rare

Paramagnets - very frequent
• disordered materials with M=0
• bad for direct manipulation by magnetic field
• no magnetic memory
• compatible with semiconductors; transitsors & photonics

Antiferromagnets - frequent
• ordered materials with M=0
• bad for direct manipulation by magnetic field
• good for retention with magnetic field around
• compatible with semiconductors; transitsors & photonics



Spintronics with antiferromagnets
ferromagnets (FM) antiferromagnets (AF)

• AF are used quite frequently as pinning layers for FM: 
exchange bias spin valve: read head for HDD

free FM (sensor)

pinned FM (reference)
AF (pinning layer)



Antiferromagnetic spintronics

• antiferromagnets: “Interesting, but without application”
Louis Néel, Nobel Lecture, December 11, 1970

• effects even in magnetization should be equally present in FM and AF:
Anisotropic Magnetoresistence

high resistance low resistance
=> realization of magnetic memory

• review: T. Jungwirth et al., Nature Nanotechnol. 11, 231 (2016).



Antiferromagnetic spintronics: Potential advantages
• wide range of AF materials (oxides, semiconductors, metals, semimetals, …)
• advantages for a construction of non-volatile memory devices:

- robust against external magnetic fields (like charge-based memory) and 
against radiation (like ferromagnetic memory) 

- no stray fringing fields => high density of memory elements is possible

MRAM: 64 MB
DDRAM: 1 GB

• ultrafast dynamics (THz instead of GHz for ferromagnets)

Nature Commun. 7, 10645 (2016).Rev. Mod. Phys. 82, 2731 (2010).



Antiferromagnetic spintronics: FeRh device

Scripta Materialia 61, 851 (2009).

• FeRh: 1st order magneto-structural phase transition at Ttr  400 K:
- FM at high temperature, AF at low (e.g., room) temperature

• antiferromagnetic memory device at 300K:
- magnetic moments oriented at T > Ttr (in FM state) by magnetic field
- information stored after cooling to 300 K (in AF state)

- robust against
magnetic field

X. Marti et al., Nature Materials 13, 367–374 (2014).



• electrical manipulation with orientation of spins: staggered current-induced field

J. Zelezny et al., Phys. Rev. Lett. 113, 157201 (2014).

Antiferromagnetic spintronics: CuMnAs device
• CuMnAs: antiferromagnetic semi-metal with TN  450 K

- epitaxial films prepared by MBE

HRTEM:

P. Wadley et al. Nature Commun. 4, 2322 (2013).



Antiferromagnetic spintronics: CuMnAs device
• room-temperature all electrical switching and readout:

P. Wadley et al. Science 351, 587-590 (2016).

• USB-operated memory device: multi-level switching 

V. Schuler et al., Nature Commun. in press; https://arxiv.org/abs/1608.03238.



Material research of antiferromagnets
• zero net magnetic moments in compensated antiferromagnets limits considerably

the portfolio of methods applicable for their research
• spintronic devices are formed by nanometer-thick (metallic) films
=> information about magnetic ordering can be obtained by:

2) X-ray magnetic linear dichroism: sign has to be determined by theory

• these experiments require large scale facilities 
=> new table-top experimental techniques are needed

=> uniaxial magnetic 
anisotropy

Sci. Rep. 5, 17079 (2015).

CuMnAs: 300 K

500 K
=>

TN = 480 K

1) neutron diffraction: for films thicker than  500 nm

Nat. Comm. 4, 2322 (2013).



Magneto-optics in ferromagnets

• rotation of light polarization due to magneto-optical effects:

different index of refraction
for + and  - circularly
polarized light

1) odd in magnetization:

Kerr effect

MO ~ M

different absorption
for E and E linearly
polarized light

2) even in magnetization:

Voigt effect (magnetic linear dichroism)

MO ~ M2



1) odd in magnetization:

Kerr effect

MO ~ M

Magneto-optics in antiferromagnets

• rotation of light polarization due to magneto-optical effects:

different index of refraction
for + and  - circularly
polarized light

different absorption
for E and E linearly
polarized light

2) even in magnetization:

Voigt effect (magnetic linear dichroism)

MO ~ M2



Magneto-optical studies of CuMnAs

• problem with Voigt effect in antiferromagnets:
- difficult to separate from other sources of polarization rotation (anisotropies)

- solution: local heating by pump pulses

MO ~ M2

V. Saidl et al., Nature Photonics, online 9 January 2017

• determination of:      easy axis position                 and      Néel temperature:
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