

2D materials and van der Waals heterostructures

Roman Gorbachev

All Natural Materials Are 3D

Peierls and Landau: No long-range crystalline order in 1D and 2D, but a melting transition in 3D.

largest known flat hydrocarbon: 222 atoms or 37 benzene rings (K. Müllen 2002)

Graphene

Human endeavours in abstract thinking vs 2D material research

Evolutionists

Creationists

Exfoliationists

Growers

Mass Production

Mechanical Exfoliation

Manchester, Science '04 Thick films: Kurtz PRB1990 Ebbesen Adv Mat 1995 Ohashi Tanso 1997 Ruoff APL1999 Gan Surf Sci2003

mm

Epitaxial Growth on SiC

Bommel 1975 Nagashima 1993 Forbeaux 1998 de Heer 2004 HRL 2009 IBM 2009

CVD growth McConville 1986 (on Ni) Land 1992 (on Pt) Transfer suggested: Geim & Novoselov Nature Mat. (2007) Realised : MIT (2008)

Chemical Exfoliation

Benjamin Brodie Phil Trans.1859 Ruess & Vogt 1948 Boehm & Hofmann 1962 Ruoff 2007 Coleman 2008 Manchester 2008

Yu(2008)

Hong (2009) Ruoff (2009)

Can We Cheat Nature?

Slice down to one atomic plane

Strongly anisotropic material

Graphite trace on oxidized Si wafer

first 2D material demonstrated - Manchester, Science '04

graphite trace on oxidized Si wafer

First Graphene Electronic Devices

Science 2004 PNAS 2005

Electronic transport

Ambipolar Field Effect

Electro-neutrality point

CONDUCTIVITY WITHOUT CHARGE CARRIERS?

Scanning Single-Electron Transistor Microscopy

Single electron transistor at the end of scanning probe!

Electronic transport

Nature Physics 4, 144 - 148 (2008)

Near the electroneutrality point the system is dominated by the network of electron-hole puddles

Phys. Rev. Lett. 99, 176801 (2007)

Absence of Localization (Klein paradox)

Massive particles in 2D:

can be localized

Massless particles in 2D:

never localized

Klein paradox (propagation of relativistic particles through a barrier) O. Klein, Z. Phys 53,157 (1929); 41, 407 (1927)

Consequence of pseudo-spin conservation

M.I.Katsnelson et al Nature Physics 2006

How to confine electrons?

Large distance between the peaks in V_g (strong screening by side gates)

> Ponomarenko *et al* Science 2008

Smallest Quantum Dots

- Only few benzene rings
- Remarkably stable
- Sustains large currents

Controlling QD size with nm precision

Previously: Nanoribbons

Ozyilmaz, et al. APL (2007); Han, et al. PRL (2007); Avouris, et al. Nat. Nanotech. (2007).

Etched graphene nanoribbons – edges destroy 1D channel, turning it into s series of 0D quantum dots

In the nanoribbon which is examined here, we find that transport must be dominated by two rather small quantum dots, which is consistent with previous transport experiments.

Rep. Prog. Phys. 75 (2012) 126502 (24pp)

Transport through graphene quantum dots

J Güttinger¹, F Molitor, C Stampfer², S Schnez, A Jacobsen, S Dröscher, T Ihn and K Ensslin

Solid State Physics Laboratory, ETH Zurich, 8092 Zurich, Switzerland

Etching always create disordered edges

Chemical modification

Reactive Plasma Etching

Hydrogenation

Suspended devices

G on SiO₂ device

suspended

Current annealing

Yield ~ 10% - 20%

first transport measurements: Phys. Rev. Lett. **101**, 096802, 2008

Graphene devices

GSiO₂ 5 000 to 20 000 cm²/Vs Suspended 100 000 to 1 000 000 cm²/Vs

available carrier densities:

Nature Phys. 7, 701-704 (2011)

Suspended devices have issues:

- Extremely fragile
- Two terminal (if homogeneous)

Graphene on hBN (and beginning of vdW heterostructures)

BN - substrate for Graphene

C.R. Dean et al., Nature Nanotechnology 5, 722-726 (2010)

Ballistic Transport at Room Temperature

Fabry–Pérot interference in top gate controlled p-n-p structure

A. V. Shytov, M. S. Rudner, L. S. Levitov PRL 101, 156804 (2008)A.F. Young, Philip Kim, Nature Physics 5, 222 - 226 (2009)

Hexagonal Boron Nitride

Hexagonal BN

BN is provided by Kenji Watanabe & Takashi Taniguchi

*contrast digitally enhanced by 2

Optical contrast 5 times less compared to graphene

Extremely difficult to locate an hBN monolayer

Small 7, 4, 465, 2011

Conductive AFM

Graphite, graphene or gold electrodes

Tunnelling devices

Conductive AFM Resistance mapping

Tunnelling resistance

Topography

Conductive AFM

No pinholes or defects

Transfer

Air contamination and the surface

Image courtesy of Juan-Carlos Idrobo

5 year progress »

Cross-sectional TEM imaging

Cross-sectional TEM imaging

How do we look inside a buried interface?

TEM sample prep

One dimensional contacts

L. Wang et al, Science 342(6158), 2013

One dimensional contacts

Science, 2013, 342(6158)

High mobility in CVD graphene

We report on ballistic transport over more than 28 μ m in graphene grown by chemical vapor deposition (CVD) that is fully encapsulated in hexagonal boron nitride. The structures are fabricated by an advanced dry van-der-Waals transfer method and exhibit carrier mobilities of up to three million cm²/(Vs).

Nano Lett., 2016, 16 (2), pp 1387–1391

Graphene on hBN

1.8 % lattice mismatch determines

Maximum moiré size is 14 nm

STM, Nature Phys. 8, 382-386 (2012)

Commensurate-incommensurate transition

1 dimensional situation: Frenkel-Kontorova model

Commensurate-incommensurate transition

Soliton: Increased strain region

Incommensurate

Commensurate

LARGE angular mismatch between the two constituent lattices (ϕ >1°)

(SMALL (< 10 nm) superlattice period)

For **SMALL** angular mismatch between the two constituent lattices (ϕ <1°)

(LARGE (> 10 nm) superlattice period)

STM measurements

STM measurements

Tensile vs Shear

Tensile Soliton

Shear Soliton

Consequences: Raman

Consequences: Raman

Self-aligning

Raman allows direct measurements of the alignment angle

Eckmann et al NanoLetters '13

Woods et al Nature Communications '16

Self-aligning

Woods et al Nature Communications '16

Wang et al Science '15

 E_s $-E_s$

Moire potential strength ~ 50 meV leads to changes in graphene's spectrum around

$$E_s = \frac{2\pi\hbar V_{\rm F}}{\sqrt{3}\,\lambda}$$

Specially aligned graphene devices

New dirac points

- New Dirac points emerge at ± E_s
- Additional peaks in ρ_{xx} + reversal of the ρ_{xy} Hall sign
- Temperature dependence of the peak shapes consistent with Dirac-like spectrum near ± E_s
- Broken electron-hole symmetry

Magnetic field:

6

Landau levels typically observed in graphene

Magnetic field:

standard 4-fold degeneracy observed

distance between LL is greater than the miniband width above 1T

Hofstadter-Like Oscillations

1/B oscillations independent of carrier density neither Landau nor Weiss oscillations

 ϕ_0 /N: unit fractions of flux quantum per superlattice unit cell

Hofstadter-Like Oscillations

Repeating features are expected when $\Phi/\phi_0 = 0,1,2...$

Phys. Rev. B **14**, 2239-2249 (1976) *Phys. Rev.* **134**, A1602–A1606 (1964)

Magnetic microbands at

$$\phi = \frac{p}{q} \phi_0$$

gapped Dirac electrons

$$H_{Dirac} = v_{mDP} (\vec{k} - \frac{e}{c} \, \delta \vec{A}) \cdot \vec{\sigma} + \Delta \sigma_z$$

Patel, Wallbank, Mucha-Kruczynski, Fal'ko (2013)

Self-similar cloning of dirac specta

anomalies at unit fractions of ϕ_0 magnetic field clones numerous Dirac points at fractal flux quanta

Nature. 497: 594-597

Nature. 497: 598–602

G/hBN/G
Vertical FET

Increasing ON/OFF

Gap in MoS₂: 1.9eV

for BN barrier: dominated by the Density of States in graphene

for MoS₂ barrier: dominated by the barrier change

T. Georgiou et al Nature Nanotechnology '13

Yang et al Science '12

G / hBN / G Crystal alignment

Tunnelling Transistor

L. Britnell et al Science '12

real space

reciprocal space

Align the two graphene layers

Mishchenko et al Nature Nano. '14

real space

reciprocal space

Align the two graphene layers

Mishchenko et al Nature Nano. '14

Negative differential conductance:

- large peak to valley current
- tunable by gate

Negative differential conductance:

- large peak to valley current
- tunable by gate

Momentum conservation

Mishchenko et al Nature Nano. '14

In-plane magnetic field

In-plane magnetic field

Mishchenko et al Nature Nano. '14 Conical cross sections with a twist

Chirality introduces additional conservation restrictions

Room-temperature operation

Traditional RTD:

- Hard to make operation at room temperatures
- Trade-off between peak to valley current and total current

hBN/G/hBN/G/hBN

BN/G/BN/G

Flake transfer x 4

EBL x 6

Annealing x 4

Plasma etch x 4

Metal evaporation x 3

top gated double layer devices

Nature Physics 7, 958-961 (2011)

Double layer structures

Vertical: tunnelling

Metal – Insulator transition

Coulomb drag & Excitons

End of part 1