

Institut de Physique et Chimie des Matériaux de Strasbourg

Optical spectroscopy as a probe of charge and energy transfer in two-dimensional materials

Stéphane BERCIAUD IPCMS, Université de Strasbourg and CNRS

berciaud@unistra.fr

New Frontiers in 2D materials Winterschool/Workshop Villard de Lans, January 16, 2017

Graphene and 2D materials at IPCMS

PCMS

• Cross-disciplinary work on graphene and 2DM since 2012

- 6 Permanent staff, 5 Postdocs + 9 PhD (currently, 1 + 4)
- Nanofabrication facility (StNano, 180 m²)
- Optical spectroscopy, optoelectronics, optomechanics, electron transport, spintronics, chemtronics, straintronics...

Fundamental properties

Energy (eV)

Devices, Hybrid Systems, Heterostructures

- Field-effect transistors, memories, sensors
- 2DM-nanoemitter hybrids
- van der Waals heterostructures
- Gr-based tunnel junctions

Advanced Mat. DOI: 10.1002/adma.201604837

Let us try to understand this...

(b) Foerster energy transfer

(c) Dexter energy transfer

MoSe₂ PL Intensity (arb. u.

...and discuss what this can be useful for.

Förster energy transfer: near field dipole-diople interaction

Th. Förster Annalen der Physik **437**, **55 (1948)** Novotny, Hecht Principles of Nano Optics, Ch 8

*R*₀: Förster radius

Förster energy transfer: near field dipole-diople interaction

Th. Förster Annalen der Physik **437**, 55 (1948) Novotny, Hecht Principles of Nano Optics, Ch 8

*R*₀: Förster radius

FRET: Distance sensing at the single molecule level

Nature Methods, 5, 507 (2008)

Nature structural biology 10, 93 (2003)

Förster and Dexter energy transfer

A Govorov, PL Hernandez Martinez, HV Demir Understanding and Modeling Förster-type Resonance Energy Transfer (FRET), Springer 2016

Photoinduced Charge Transfer and Energy Transfer

Key near-field phenomena in nano-optoelectronic devices

Affect:

(photo)excited states dynamics
 Fermi energies/doping levels

Sensitive to:

- donor-acceptor distance
- dimensionality
- band alignment
- excitonic effects
- Fermi energies/doping levels

How to probe charge and energy transfer ?

Experimental techniques:

- Raman spectroscopy (CT)
- Photoluminescence spectroscopy (CT & ET)
- Non-linear (pump-probe) spectroscopy (CT & ET)

Devices:

- Nanofabrication
- Custom devices
- Electrical control

Today's menu

I. Introduction

- Two-dimensional materials (2DM)
- Semiconductor nanostructures
- Hybrid and van der Waals heterostructures
- Optoelectronic devices
- Optical spectroscopies

II. Near-field coupling in hybrid heterostructures

- Energy transfer: distance scaling, dimensionality, screening
- Electrical control of near-field coupling

III. Near-field coupling in van der Waals Heterostructures

- TMD-TMD heterostructures
- Charge vs energy transfer in graphene-TMD heterostructures

IV. Conclusion and outlook

- Novel optoelectronic devices
- Towards opto-electro-mechanics

Introducing 2D materials

Ajayan, Kim, Banerjee - Physics Today (2016)

Graphene: a unique, tunable 2D electron gas

Introducing Transition Metal Dichalcogenides

- MX₂ with M = Mo, W, Re,... X = S, Se, Te
- Well documented in the bulk Wilson and Yoffe Adv. Phys. 1969
- In this talk: Semiconducting MX₂ only

M. Chhowalla et al., Nat. Chem. 5, 263 (2013)

- Trigonal prismatic phase
- 2*Hc*-MX₂ (AbA,BaB stacking)
 → MoS₂, MoSe₂, WS₂, WSe₂, MoTe₂

Some remarkable properties of 2Hc-TMD

Photonics

- Indirect (bulk) to direct (1L) bandgap*
- Tightly bound excions (trions, biexcitons)*
- Single photon emitters*
- Towards large PL quantum yields*

Valleytronics

- All optical valley polarization Mak *et al.* + Zeng *et al.*, Nat. Nano 2012
- Valley-Hall effect

K. F. Mak, PRL 105, 136805 (2010)

Mak et al. Science 2014

Nat. Nano 2014 (TU Vienna, MIT, Seattle)

Optoelectronics

- Photodetection, electroluminescence, photovoltaics
- Type II van der Waals heterostructures

(Seattle, ICFO, Columbia, Berkeley, Manchester, MIT, Vienna, EPFL, U. Kansas,...)

Columia, Berkeley, Case Western, Hong Kong, INSA Toulouse, Vanderbilt, LNCMI, Geneva...
 *Nat Nano 2015 (ETH, Rochester, LNCMI, Hefei/Seattle) *Amani et al. Science 2015

Basic optical properties of TMD

2.2

Froehlicher et al., PRB 2016 (also Ruppert NL 2014, Lezama NL 2015)

30+ years of colloidal semiconductor nanostructures

- Quantum dots (0D), rods (~1D), wells (2D)
- Size and shape tunable properties
- Broadband absorption / narrow emission

30+ years of colloidal semiconductor nanostructures

- Quantum dots (0D), rods (~1D), wells (2D)
- Size and shape tunable properties
- Broadband absorption / narrow emission

Hybrid systems and heterostructures: why the interest?

Harnessing near-field interactions in new optoelectronic devices

Hybrid systems and heterostructures

Y. Liu et al., Nature Review Materials doi: 10.1038/natrevmats.2016.42

FRET in hybrid optoelectronic devices

B. Guzelturk & HV Demir Advanced Functional Materials 10.1002/adfm.201603311

Energy Transfer Pumping

Achermann *et al.* Nature (2004) (Los Alamos)

- Energy/exciton funnelling
 Substrate sensitization
 Color conversion
 Long Range (>> 1 nm)
- How to separate the transferred excitons?

Charge Transfer in hybrid photodetectors

Photodetection Short range (< 1 nm) → Selectivity/Sensitivity Processability

Short range...

 \oplus

- Highly sensitive to:
 - ✓ Surface states
 - ✓ Adsorbates
 - ✓ Interfaces/ligands

Charge Transfer in hybrid photodetectors

High gain Photodetectors

Konstantatos *et al.* Nat. Nano (2012) (ICFO)

Photodetection Short range (< 1 nm) → Selectivity/Sensitivity Processability

Short range...

Ð

- ✓ Surface states
- Adsorbates
- ✓ Interfaces/ligands

Charge Transfer in hybrid photodetectors

High gain Photodetectors

Kufer *et al.* Advanced Mat. (2015)

Photodetection Short range (< 1 nm) → Selectivity/Sensitivity Processability

Short range...

Ð

- Surface states
- Adsorbates
- ✓ Interfaces/ligands

van der Waals Heterostructures

- ✓ No dangling bounds
- ✓ No lattice mismatch issues
- ✓ Rotational degree of freedom
- 2010 : Graphene on hBN
- 2017 : wet or dry transfer, pick up and lift,...
- Numerous possibilities!

Haigh, Gorbachev *et al.*, Nature Materials 2012 Manchester Group

Castellanos-Gomez et al. 2D Materials 1 011002 (2014)

Atomically thin p-n junctions

C-H Lee *et al.* Nat. Nano (2014) (Columbia)

Optoelectronic devices based on vdWH: key mechanisms

- Atomic dimensions \neq conventional heterostructures
 - Exciton formation
 - Exciton dissociation
 - Charge transport
 - Interfacial transfer
 - + losses: exciton recombination

- ✓ Photoactive material: WSe₂
- ✓ Electrical contacts: graphene
- ✓ Electric field: V_B

Optoelectronic devices based on vdWHs: key mechanisms

BN/Gr/WSe₂/Gr/BN

M. Massicotte et al., Nat. Nano. 11, 42 (2016)

- ✓ Photoactive material: WSe₂
- ✓ Electrical contacts: graphene
- ✓ Electric field: V_B

- Exciton formation
- Exciton dissociation
 - Charge transport
 - Interfacial transfer
 - + losses: exciton recombination

Type I (CdSe/ZnS) or II (CdSe/CdTe) Heterojunctions

Optical Gap < Transport Gap

TMD: Y. Liang et al., APL **103**, 42106 (2013), M. Ugeda *et al.*, Nat. Mater. **5**, 1091 (2014) Graphene: Y.-J. Yu *et al.*, Nano Lett. **9**, 3430 (2008), II-VI semicond : Norris et al. Science 2008

Our experimental approach

Our experimental approach

Electron-phonon coupling and Raman spectroscopy

Electron-phonon coupling and Raman spectroscopy

Separating doping and strain

Well-defined and useful correlations between Raman parameters

Data : Froehlicher & Berciaud, PRB 2015 Metten *et al.*, PRApplied 2014 Zabel *et al.*, Nano Lett 2012 Lee *et al.*, Nano Lett 2012 See also : A. Das *et al.*, Nat Nano 2008 Lee *et al.*, Nat Comm 2012

Raman Spectrum of bilayer MoTe₂

✓ Interlayer interactions: Davydov splitting and unified description of the phonon modes

Froehlicher et al., Nano Lett. 15, 6481 2015 (MoTe₂), Lorchat et al. ACS Nano 2016 (ReS₂ and ReSe₂)

Related works:

- M. Grzeszczyk *et al.*, 2D Materials **3**, 25010 (2016) (MoTe₂)
- Q. J. Song et al., PRB 93, 115409 (2016) (MoTe₂)
- K. Kim et al., ACS Nano 10, 8113 (2016) (MoSe₂)

Hyperspectral Imaging of N-layer MoTe₂

Hyperspectral Raman map

Interlayer modes in van der Waals Heterostructures

C.H Lui et al., PRB 91, 165403 (2015)

(Time resolved) photoluminescence

➤ Tunable pulsed laser
 pulse width : 100 fs → 70 ps
 rep.rate 100 kHz → 80 MHz)
 ➤ Fast avalanche photodiode
 (resolution ≈ 50 ps)
 ➤ Photon counting board

(Time resolved) photoluminescence

➤ Tunable pulsed laser
 pulse width : 100 fs → 70 ps
 rep.rate 100 kHz → 80 MHz)
 ➤ Fast avalanche photodiode
 (resolution ≈ 50 ps)

Photon counting board

(Time resolved) photoluminescence

➤ Tunable pulsed laser
 pulse width : 100 fs → 70 ps
 rep.rate 100 kHz → 80 MHz)
 ➤ Fast avalanche photodiode
 (resolution ≈ 50 ps)

Photon counting board

Streak Camera: an optical oscilloscope

Data from Insa Toulouse : G. Wang et al. APL 2015 & C. Robert et al. PRB 2016

Outline

• Near-field coupling in hybrid heterostructures

• Charge and energy transfer in van der Waals heterostructures

Nano-emitter graphene FRET

- First theoretical studies: Swathi and Sebastian J. Chem. Phys. 2008 & 2009
- ✓ Single particle studies ?
- ✓ Distance dependence ? Dimensionality effects ?
- ✓ Electrical control ?

Core/shell nanocrystals on graphene : wide field fluorescence microscopy
"Proof of concept" experiment: evidence for efficient energy transfer

Z. Chen, S. Berciaud et al. ACS Nano (2010)

Core/shell nanocrystals on graphene : wide field fluorescence microscopy
"Proof of concept" experiment: evidence for efficient energy transfer

Z. Chen, S. Berciaud et al. ACS Nano (2010)

Energy transfer between individual nanocrystals and graphene

Energy transfer between individual nanocrystals and graphene

Energy transfer between individual nanoplatelets and graphene

Graphene

Quartz

- Mechanically exfoliated graphene monolayers on quartz
- CdSe/CdS nanocrystals (B. Dubertret, ESPCI)
- Smooth MgO films grown by MBE (D. Halley, IPCMS)
- Characterization by Raman spectroscopy and AFM

Epitaxial growth of MgO on graphene: F. Godel *et al.* (Nanotechnology 2013)

F. Federspiel et al. Nano Letters 15, 1252 (2015)

Distance scaling of the energy transfer rate

Demonstration of a graphene-based molecular ruler (1/d⁴ scaling)

*Kühn J. Chem Phys 1970 Chance, Prock, Silbey Adv. Chem. Phys. **37** 65 (1978)

F. Federspiel et al. Nano Letters 15, 1252 (2015)

Distance scaling of the energy transfer rate

Demonstration of a graphene-based molecular ruler (1/d⁴ scaling)

*Kühn J. Chem Phys 1970 Chance, Prock, Silbey Adv. Chem. Phys. **37** 65 (1978)

F. Federspiel et al. Nano Letters 15, 1252 (2015)

Dimensionality matters: platelets vs. dots

0D - Graphene

2D - Graphene

$$\Lambda = \frac{h}{\sqrt{2m_x k_B T}} \approx 7.5 \,\text{nm} \quad \begin{array}{l} \text{d} \gg 1/q_{\text{max}} \\ L_x, L_y > \Lambda \text{ and } L_z << d \end{array}$$
$$\gamma_T \propto \int_0^\infty dq \, q^3 e^{-2qd} e^{-\left(\frac{\Lambda q}{2\pi}\right)^2}$$

Swathi & Sebastian JCP 2008 & 2009 Gomez-Santos & Stauber PRB 2011 Gaudreau *et al.* Nano Lett 2013

D. M. Basko *et al.* EPJB 1999 Kos *et al.* PRB 2005

F. Federspiel *et al.* Nano Letters 15, 1252 (2015) see also arXiv:1501.03401

Dimensionality matters: platelets vs. dots

0D - Graphene

Swathi & Sebastian JCP 2008 & 2009 Gomez-Santos & Stauber PRB 2011 Gaudreau *et al.* Nano Lett 2013

D. M. Basko *et al.* EPJB 1999 Kos *et al.* PRB 2005

F. Federspiel *et al.* Nano Letters 15, 1252 (2015) see also arXiv:1501.03401

Related Results with other materials

 NV Centers

 NV

 Graphene

 NV

 Graphene

 NV

 Statistical descent for the state of the s

Distance dependence of FRET to graphene Gaudreau *et al.* Nano Lett. **13**, 2030 (2013) Tisler *et al.* Nano Lett. **13**, 3152 (2013)

Single Qdots on graphene

B. Rogez *et al.* JPCC 118, 18445 (2014)O. Ajayi *et al.* APL 104 171101 (2014)

Distance dependence of FRET to TMDs Goodfellow et al. APL 2015 (MoSe2)

TMD vs Graphene: Dielectric screening matters (1)

Raja et al. Nano Letters 2016, see also: Z. Chen et al. ACS Nano 2010, F. Prins et al. Nano Lett 2014

TMD vs Graphene: Dielectric screening matters (2)

Theoretical prediction(s):

Chance, Prock, Silbey 1970's Gordon, Gartstein J. Phys Cond. Matter 2013

Experiments: QDs on MoS₂ layers

Prins *et al.*, Nano Letters 2014 Raja *et al.*, Nano Letters 2016

Hybrid phototransistors: electrical Control of FRET

Paradisi et al. APL 2015

Electrical Control of FRET

Quantum Dot

PbS nanocrystals on graphene

4

Lee et al. Nano Letters 14, 7115 (2014)

Electrical Control of FRET in QD-TMD devices

QD PL resonant with B exciton in MoS2
 Gate-induced absorption modulation in MoS₂
 Gate-induced modulation of the FRET Rate

Prasai et al., Nano Lett. 2015 (K. Bolotin Group)

Beware of Polymer Electrolytes

Froehlicher & SB, PRB 2015

- Highly efficient « Förster-type » energy transfer (up to ~ 95%)
- Graphene-based molecular ruler at the single particle level
- Important role of dimensionality
- Electrical control : PL modulation by ~2x (graphene) up to 5x (MoS₂)
- Charge transfer \rightarrow Photogating in Hybrid photodetectors
- > Outlook:
- Probing exciton dimensionality with FRET?
- Performance improvements with device engieering?

Outline

• Near-field coupling in hybrid heterostructures

• Charge and energy transfer in van der Waals heterostructures

Band alignments

TMD: Y. Liang et al., APL **103**, 42106 (2013), M. Ugeda *et al.*, Nat. Mater. **5**, 1091 (2014) Graphene: Y.-J. Yu *et al.*, Nano Lett. **9**, 3430 (2008)

Interlayer excitons in TMD/TMD heterostructures

Ultrafast (<ps) formation Long lived (>ns) Valley polarized Direct or indirect (θ) PN Junctions

> Fang *et al.*, PNAS 2014 Hong *et al.*, Nat Nano 2014 Lee *et al.*, Nat Nano 2014 Rivera *et al.*, Nat Comm 2015 Rivera *et al.*, Science 2016 Ceballos *et al.*, ACS Nano 2014 Ross *et al.*, Nano Lett 2017

...

Energy Transfer in TMD/TMD heterostructures

Open debate: competition between interlayer charge and energy transfer

Charge and energy transfer in a graphene/MoSe₂ van der Waals heterostructure

> Graphene + MoSe₂

MoSe₂

Photoluminescence mapping

Raman mapping

Raman response vs photon flux (2)

Raman response vs photon flux (2)

Clear signatures of photoinduced charge transfer

Clear signatures of photoinduced charge transfer

Evidence for TMD \rightarrow Gr electron transfer

2D and G mode correlations: separation of strain and e⁻/h⁺ doping

Quantifying photoinduced doping

 $\mathsf{PL}\,\mathsf{vs}\,\Phi_{\mathsf{photons}}$

- PL saturation on bare and decoupled MoSe₂:
 → Exciton-Exciton Annihilation (EEA)
- No PL saturation on Gr/MoSe₂
- \rightarrow Drastic reduction of the excitonic lifetime (~ 1 ps)
- \rightarrow Charge <u>and</u> Energy Transfer?

 $\mathsf{PL}\,\mathsf{vs}\,\Phi_{\mathsf{photons}}$

Exciton diffusion

- PL saturation on bare and decoupled MoSe₂:
- \rightarrow Exciton-Exciton Annihilation (EEA)
- No PL saturation on Gr/MoSe₂
- \rightarrow Drastic reduction of the excitonic lifetime (~ 1 ps)
- \rightarrow Charge <u>and</u> Energy Transfer?

Toy model

• At
$$\Phi_{\rm ph} = 0$$
, $n_{\rm M} = 0$ and $n_{\rm G} = 0$

•
$$\Gamma_{\text{IET}} \gg \Gamma_{\text{ICT}}, \Gamma_0$$

$$\langle n_{\rm M} \rangle \approx \frac{{\rm A} \Phi_{\rm ph}}{\Gamma_{\rm IET}} \checkmark$$

$$\langle n_{\rm G} \rangle \approx \frac{n_{\rm G,max}}{1 + \Phi_{\rm ph}^{\rm sat} / \Phi_{\rm ph}} \checkmark$$

Conclusion

- ✓ Efficient energy transfer from semiconductor nanostructures to 2D materials
- ✓ Molecular rulers
- ✓ FRET as a probe of exciton dimensionality
- ✓ FRET engineering

- Photoinduced e⁻ transfer from TMD to graphene
 Towards local photogeting of graphene
 - \rightarrow Towards local photogating of graphene
- ✓ Fast IET is responsible for PL quenching
- ✓ IET is more efficient than ICT
- Open questions
 - ✓ Energy transfer mechanism in Gr-TMD? In TMD-TMD?
 - ✓ Band alignment and excitonic effects?

Outlook 1: FRET-induced electrical currents

A. Brenneis et al. Nat. Nano 2015. (Holleitner group with Koppens group)

Outlook2: opto-electromechanics in 2DM

Opto

Optoelectromechanical control of FRET

A. Reserbat-Platey, K. Schadler et al., Nat Comm. (2016) (Bachtold and Koppens groups)

Acknowledgements

- <u>François Federspiel</u> <u>Guillaume Froehlicher</u> <u>Etienne Lorchat</u> Olivia Zill Dominik Metten
- JF Dayen, A. Mahmood B. Doudin David Halley Michi Romeo Pierre Gilliot StNano Clean Room

Michel Nasilowski Silvia Pedetti Emmanuel Lhuillier (INSP) Benoît Dubertret

