

Topological materials and topological crystalline insulators

Tomasz Story (Institute of Physics PAS, Warsaw)

Outline

- I. Topological insulators (TI):
- TI concept and key physical factors
- Experimental techniques
- 3D and 2D materials canonical TI
- Device ideas
- Physical classification and new topological materials

II. Topological crystalline insulators (TCI)

- IV-VI semiconductors
- Topological protection by crystalline symmetry
- Controlling TCI state (lattice distortion, bandgap engineering)

III. Atomic steps as new 1D topological systems

Summary

Insulators and metals semiconductors - semimetals

Energy band gap E_G Electric conductivity $\sigma_0 = \sigma(T=0)$

Insulators: $E_G = 0.1-10 \text{ eV}$; $\sigma_0=0$ Metals: $E_G = 0$; σ_0 is finite

M.Z. Hasan, C.L. Kane, Rev. Mod. Phys. 82, 3045 (2010)

Topological insulators: physical factors

- Inverted c-band and vband symmetry
- Strong spin-orbit coupling E_{so}≈E_G
- Odd number of Dirac cones

- Metallic, helical Dirac-like electronic surface states
- Topological protection by time reversal symmetry

wikipedia

Band inversion in semiconductors

P. Barone et al., Phys. Rev. B 88 045207 (2013)

Topological electronic states

Edge states in 2D heterostructures Surface states in bulk crystals

S. Murakami, J. Phys. Conf. Ser. <u>302</u>, 012019 (2011)

Topological electronic states experimental techniques

Angle- and spin-resolved photoemission spectroscopy (ARPES, SRPES)

Scanning tunneling microscopy and spectroscopy (STM/STS): conductance spectroscopy and quasiparticle interference

Magnetotransport: SdH oscillations, weak antilocalization

Magnetooptics

Photoemission – crystal surface sensitive technique

W. Mönch "Semiconductor surfaces and interfaces" 1993

Topological insulators: key materials

- Bulk crystals (3D)
- Bi_{1-x}Sb_x
- Bi₂Se₃
- Bi₂Te₃
- (....)
- 2D electronic systems
- HgTe/CdTe quantum wells
- InAs-GaSb heterostructures

3D topological insulators

Bi_2Se_3 , Bi_2Te_3 , Sb_2Te_3 Bi_2Te_2Se

H. Zhang et al., Nat. Phys. 5, 438 (2009)

(a) $P1^+_{x+iy,\uparrow}, P1^+_{x-}$ $P1_{x,y,z}^{-}$ $P1_{x,y}^+$ $P1^+_{x+iy,\downarrow}, P1^+_{x-iy,\uparrow}$ $P1_{x,y,z}^+$ Bi $P1_z^+$ $P2_{z,\uparrow}^-, P2_{z,\downarrow}^ P1_{z,\uparrow}^+, P1_{z,\downarrow}^+$ $P2^{-}_{x,y,z}$ $P2_z^-$ Se $P2^{-}_{x+iy,\uparrow}, P2^{-}_{x-iy,\downarrow}$ $P2_{x,y,z}^+$ $P2_{x,y}^{-}$ $P2^-_{x+iy,\downarrow}, P2^-_{x-iy,\uparrow}$ $P0^-_{x,y,z}$ **(II) (I) (III)**

Chemical bonding

Crystal field Spi splitting cou

Spin-orbit coupling

Electronic structure

Model topological insulator Bi₂Se₃

M.Z. Hasan, C.L. Kane, Rev. Mod. Phys. <u>82</u>, 3045 (2010)

3D topological insulators

Bi – semimetal with strong spin-orbit coupling

Bi_{1-x}Sb_x – semiconductor alloy – thermoelectric material

L. Fu & C. Kane theory for $Bi_{1-x}Sb_x$ (PRB 2007) Experimental verification: Hsieh et al., Nature 2008

HgTe/CdTe quantum wells: 2D topological insulators Quantum spin Hall (QSH) systems

Inversion of band edges determines the topological properties

B. Andrei Bernevig, Taylor L. Hughes, Shou-Cheng Zhang, Science 2006

Experimental observation of topological edge states in HgTe/CdTe (QSH) (Konig et al, Science 2007)

Topological protection of edge states warranted by time reversal symmetry

$$\left\langle \psi(k,\uparrow) \middle| V \middle| \psi(-k,\downarrow) \right\rangle = 0$$

Generation of spin current Electrical detection of spin polarization

nature nanotechnology

PUBLISHED ONLINE: 23 FEBRUARY 2014 | DOI: 10.1038/NNANO.2014.10

Electrical detection of charge-current-induced spin polarization due to spin-momentum locking in Bi₂Se₃

C. H. Li^{1*}, O. M. J. van 't Erve¹, J. T. Robinson², Y. Liu³, L. Li³ and B. T. Jonker^{1*}

Topological transistor

Spin-filtered edge states with an electrically tunable gap in a two-dimensional topological crystalline insulator

Junwei Liu^{1,2}, Timothy H. Hsieh², Peng Wei^{2,3}, Wenhui Duan¹, Jagadeesh Moodera^{2,3} and Liang Fu²*

Topological materials

Table I. Summary of topological insulator materials that have bee experimentally addressed. The definition of (1;111) etc. is introduced in Sect. 3.7. (In this table, S.S., P.T., and SM stand for surface state, phase transition, and semimetal, respectively.)

Туре	Material	Band gap	Bulk transport	Remark	Reference			
2D, $v = 1$	CdTe/HgTe/CdTe	<10 meV	insulating	high mobility	31			
2D, $v = 1$	AlSb/InAs/GaSb/AlSb	$\sim 4 \text{ meV}$	weakly insulating	gap is too small	73			
3D (1;111)	$Bi_{1-x}Sb_x$	<30 meV	weakly insulating	complex S.S.	36, 40			
3D (1;111)	Sb	semimetal	metallic	complex S.S.	39			
3D (1;000)	Bi2 Se3	0.3 eV	metallic	simple S.S.	94			
3D (1;000)	Bi2 Te3	0.17eV	metallic	distorted S.S.	95, 96			
3D (1;000)	Sb ₂ Te ₃	0.3 eV	metallic	heavily p-type	97			
3D (1;000)	Bi2 Te2 Se	~0.2eV	reasonably insulating	ρ_{xx} up to 6 Ω cm	102, 103, 105			
3D (1;000)	(Bi,Sb)2 Te3	<0.2eV	moderately insulating	mostly thin films	193			2.2
3D (1;000)	Bi2-xSbxTe3-ySey	<0.3eV	reasonably insulating	Dirac-cone engineering	107, 108, 212	(a)	Vacuum	(c)
3D (1;000)	Bi2 Te1.6S14	0.2 eV	metallic	n-type	210	(~)		
3D (1;000)	Bi1.1Sb0.9 Te2S	0.2 eV	moderately insulating	ρ_{xx} up to 0.1 Ω cm	210			
3D (1;000)	Sb ₂ Te ₂ Se	?	metallic	heavily p-type	102			
3D (1;000)	Bi2(Te,Se)2(Se,S)	0.3 eV	semi-metallic	natural Kawazulite	211		down spin	
3D (1;000)	TlBiSe ₂	~0.35 eV	metallic	simple S.S., large gap	110-112			
3D (1;000)	TlBiTe ₂	~0.2eV	metallic	distorted S.S.	112			¥ I
3D (1;000)	TlBi(S,Se)2	<0.35 eV	metallic	topological P.T.	116, 117		2D Topological Insulator	
3D (1;000)	PbBi ₂ Te ₄	~0.2eV	metallic	S.S. nearly parabolic	121, 124			
3D (1;000)	PbSb ₂ Te ₄	?	metallic	p-type	121	(L) (· .	(-D E A
3D (1;000)	GeBi ₂ Te ₄	0.18eV	metallic	n-type	102, 119, 120	(D)	Bulk	(a) L Helical sp
3D (1;000)	PbBi4Te7	0.2 eV	metallic	heavily n-type	125		Conduction Band	
3D (1;000)	GeBi4-xSbxTe7	0.1-0.2 eV	metallic	n (p) type at $x = 0$ (1)	126	JQ VB		
3D (1;000)	(PbSe)5 (Bi2Se3)6	0.5 eV	metallic	natural heterostructure	130	er	down up spin	
3D (1;000)	(Bi2)(Bi2Se2.6S0.4)	semimetal	metallic	(Bi2)n(Bi2Se3)m series	127	iii ii	spin V Dirac point	
3D (1;000)	(Bi2)(Bi2Te3)2	?	?	no data published yet	128	-		I k
3D TCI	SnTe	0.3 eV (4.2 K)	metallic	Mirror TCI, $n_M = -2$	62			Surface
3D TCI	Pb _{1-x} Sn _x Te	<0.3eV	metallic	Mirror TCI, $n_M = -2$	164		Bulk	
3D TCI	Pb _{0.77} Sn _{0.23} Se	invert with T	metallic	Mirror TCI, $n_M = -2$	162		Valence Band	K _X #
2D, $\nu = 1$?	Bi bilayer	~0.1eV	?	not stable by itself	82, 83		k = 0	T T
3D (1;000)?	Ag ₂ Te	?	metallic	famous for linear MR	134, 135			
3D (1;111)?	SmB ₆	20 meV	insulating	possible Kondo TI	140-143			
3D (0;001)?	Bi14Rh3I9	0.27eV	metallic	possible weak 3D TI	145			
3D (1;000)?	RBiPt (R = Lu, Dy, Gd)	zero gap	metallic	evidence negative	152			
Weyl SM?	$Nd_2(Ir_{1-x}Rh_x)_2O_7$	zero gap	metallic	too preliminary	158			

Journal of the Physical Society of Japan 82 (2013) 102001

http://dx.doi.org/10.7566/JPSJ.82.102001

Topological Insulator Materials

INVITED REVIEW PAPERS

Yoichi ANDO*

Topological materials

ORIGIN OF BULK BANDGAP:

- Semiconductor-like
- Electron correlations
- Supercoducting
- Magnetic field/magnetization

PHYSICAL SYMMETRY:

- <u>Time reversal symmetry (TRS)</u>
- Crystal symmetry
- Particle-antiparticle symmetry
- <u>Topological insulators (Z₂ class canonical TI)</u>
- Topological crystalline insulators
- Topological Kondo insulators
- Topological superconductors
- Quantum Hall effect and Quantum anomalous Hall effect
- and
- Topological semimetals (Dirac, Weyl)
- and
- Topological photonic, vibronic, atomic and mechanical systems

II. Topological crystalline insulators - TCI IV-VI semiconductor family

							2
							Helium
							4.003
		5	6	7	8	9	10
		B	С	Ν	0	F	Ne
		Boron 10.811	Carbon 12.0107	Nitrogen 14.00674	Oxygen 15.9994	Fluorine 18.9984032	Neon 20.1797
		13	14	15	16	17	18
		Al	Si	Р	S	Cl	Ar
		Aluminum 26.981538	Silicon 28.0855	Phosphorus 30.973761	Sulfur 32.066	Chlorine 35.4527	Argon 39.948
	30	31	32	33	34	35	36
	Zn	Ga	Ge	As	Se	Br	Kr
	Zinc 65.39	Gallium 69.723	Germanium 72.61	Arsenic 74.92160	Selenium 78.96	Bromine 79.904	Krypton 83.80
	48	49	50	51	52	53	54
	Cd	In	Sn	Sb	Te	Ι	Xe
	Cadmium 112.411	Indium 114.818	Tin 118.710	Antimony 121.760	Tellurium 127.60	Iodine 126.90447	Xenon 131.29
	80	81	82	83	84	85	86
	Hg	Tl	Pb	Bi	Po	At	Rn
;	Mercury 200.59	Thallium 204.3833	Lead 207.2	Bismuth 208.98038	Polonium (209)	Astatine (210)	Radon (222)
	112	113	114				, <i>/</i>
	(277)						

• Binary compounds:

- PbTe, PbSe, PbS, SnTe, GeTe
- Substitutional solid solutions:
- $Pb_{1-x}Sn_xTe, Pb_{1-x}Sn_xSe$
- Diluted magnetic semiconductors:
- Sn_{1-x}Mn_xTe, Ge_{1-x}Mn_xTe

IV-VI semiconductors

Rock-salt crystal structure.

Narrow-gap materials (0-0.3 eV) with a direct gap at 4 equivalent L-points . Strong (1 eV) relativistic interactions (spin-orbit and Darwin terms). Small effective masses and high mobilities of electrons and holes. Materials for thermoelectric generators and mid-infrared lasers and detectors.

Pb_{1-x}Sn_xTe substitutional solid solutions

R. Dornhaus, G. Nimtz, and B. Schlicht, Springer Tracts in Modern Physics vol. 98, Narrow-Gap Semiconductors (Springer, Berlin, 1983)

Electron band structure of IV-VI semiconductors

Relativistic interactions in PbTe and Pb_{1-x}Sn_xTe

$$\widehat{H} = \frac{\widehat{p}^2}{2m_0} + U - \frac{\widehat{p}^4}{8m_0^3 c^2} + \frac{\hbar^2}{8m_0^3 c^2} \nabla^2 U + \frac{\hbar}{4m_0^3 c^2} \widehat{\sigma} (\nabla U \times \widehat{p})$$

Band structure of Pb_{1-x}Sn_xTe: tight binding calculations

- PbSnTe in band inversion region:
- A) band insulator
- B) zero bulk band gap
- C) inverted gap TCI
- D) SnTe TCI

Yellow – p-type cation orbitals Blue – p-type anion orbitals

Topological crystalline insulators SnTe - theoretical analysis

SnTe - TCI states with 4 Dirac cones nearby X-points of the surface Brillouin zone

Lifshitz transition -Topological changes of Fermi surface

T.H. Hsieh, H. Lin, J. Liu, W. Duan, A. Bansil, L. Fu, Nature Commun. <u>3</u>, 982 (2012).

Topological crystalline insulators: SnTe vs PbTe – theoretical analysis

PbTe – trivial band insulator E_G>0

SnTe – topological insulator (TCI) E_G<0

T.H. Hsieh, H. Lin, J. Liu, W. Duan, A. Bansil, L. Fu, Nature Commun. <u>3</u>, 982 (2012).

Topological insulators (TI) vs Topological crystalline insulators (TCI)

Metallic surface (or edge) states with linear energy dispersion (Dirac-like). Inverted band ordering resulting from relativistic (spin-orbital) effects. Topological protection. Helical spin polarization.

Topological protection mechanism (symmetry):

Time reversal symmetry (in TI) - mirror-plane crystal symmetry (in TCI)

Dirac cones location – odd numer at TRIM points of BZ (TI) – even (in TCI)

Topological invariant: Chern numer, Z_2 (in TI) – mirror Chern numer (in TCI)

IV-VI topological materials

Crystal growth: A. Szczerbakow

Structural and chemical characterization:

J. Domagała, W. Domuchowski, E. Łusakowska, R. Minikayev, A. Reszka

Magneto-transport and magnetic studies – K. Dybko, W. Knoff, M. Szot

Band structure calculations – R. Buczko, M. Galicka, P. Kacman, S. Safaei

Photoemission measurements at Lund University (synchrotron facility) and KTH Stockholm (laser facility):
P. Dziawa, B.J. Kowalski (IP PAS), T. Balasubramanian, C.M. Polley (Lund), M.H. Berntsen, O. Tjernberg, B.M. Wojek (KTH)
TS

Pb_{1-x}Sn_xSe substitutional solid solutions

Pb_{1-x}Sn_xSe monocrystals grown by self-selecting vapor growth

Natural (001) crystal facets – cleavage planes Stoichiometry control of n – and p-type conductivity Highly homogeneous chemical composition of solid solutions

A. Szczerbakow - IF PAN: J. Cryst. Growth 139, 172 (1994);

Structural and chemical characterization

X-ray diffraction (XRD)

EDX chemical analysis

Surface morphology analysis by AFM microscopy

Brillouin zone for (001) surface

Electron band structure of Pb_{0.77}Sn_{0.23}Se ARPES experimental studies

- Energy dispersion relation for temperature varying across band inversion point
- P. Dziawa, B.J. Kowalski, K. Dybko, R. Buczko, A. Szczerbakow, et al. Nature Materials <u>11</u>, 1023 (2012)

Electron band structure of Pb_{0.77}Sn_{0.23}Se ARPES experimental studies

Energy dispersion E(k_v) for varying photon energy

Electronic structure - ARPES

 Fermi surface E(k_x, k_y) for various binding energies E_b

Pb_{0.67}Sn_{0.33}Se, T=87 K, hv=18.5 eV

Trivial insulator (PbSe) vs topological crystalline insulator (Pb_{1-x}Sn_xSe)

x=0, 0.15, 0.19, 0.23, 0.30, 0.37

B.M. Wojek , P. Dziawa, B.J. Kowalski, A. Szczerbakow, A.M. Black-Schaffer, M.H. Berntsen, T. Balasubramanian, T. Story, O. Tjernberg, Phys. Rev. B <u>90</u> 161202 (2014)

Pb_{1-x}Sn_xSe: Topological T-x phase diagram

B.M. Wojek, P. Dziawa, B.J. Kowalski, A. Szczerbakow, A.M. Black-Schaffer, M.H. Berntsen, T. Balasubramanian, T. Story, O. Tjernberg, Phys. Rev. B Rapid Com . <u>.90</u>, 161202 (2014)

$Pb_{1-x}Sn_xSe/BaF_2$ (111) – thin layers

Time reversal invariant momentum

$Pb_{1-x}Sn_xSe/BaF_2$ (111) layers

PHYSICAL REVIEW B 89, 075317 (2014)

Observation of topological crystalline insulator surface states on (111)-oriented $Pb_{1-x}Sn_xSe$ films

C. M. Polley,^{1,*} P. Dziawa,² A. Reszka,² A. Szczerbakow,² R. Minikayev,² J. Z. Domagala,² S. Safaei,² P. Kacman,² R. Buczko,² J. Adell,¹ M. H. Berntsen,^{3,†} B. M. Wojek,³ O. Tjernberg,³ B. J. Kowalski,² T. Story,² and T. Balasubramanian¹

Spin polarization of TCI states: tight binding model – Pb_{0.76}Sn_{0.24}Se

B.M. Wojek, R. Buczko et al. Phys. Rev. B 87, 115105 (2013)

Spin polarization of TCI states in SnTe

S. Safaei, P. Kacman, R. Buczko, Phys. Rev. B <u>88</u>, 045305 (2013) tight binding calculations

Spin polarization of TCI states: SRPES experiment – Pb_{0.76}Sn_{0.24}Se

B.M. Wojek, R. Buczko et al. Phys. Rev. B <u>87</u>, 115106 (2013)

Spin polarization in TCI: SRPES – Pb_{0.6}Sn_{0.4}Te

• S-Y Xu, ... M.Z. Hasan, Nat. Commun. <u>3</u>, 1192 (2012).

Topological surface states in distorted PbSnSe crystal lattice

Direct observation and temperature control of the surface Dirac gap in a topological crystalline insulator

B.M. Wojek¹, M.H. Berntsen¹, V. Jonsson^{1,2}, A. Szczerbakow³, P. Dziawa³, B.J. Kowalski³, T. Story³ & O. Tjernberg^{1,2}

Topological surface states in distorted PbSnSe crystal lattice

B.M. Wojek et al., Nat. Commun. <u>6</u>, 8463 (2015)

Pb_{0.77}Sn_{0.23}Se: magneto-transport

Pb_{0.77}Sn_{0.23}Se: magneto-transport

Drude model for magneto-conductivity Two parrallel conduction channels Fitting of electron transport parameters σ_{BS} , μ_{BS} , σ_{SS} , μ_{SS} for bulk crystal and surface channels

K. Dybko et al.

Controlling electrical properties of TCI materials

Deep mid-gap doping centers: group III: In

Transition metals (V, Mo)

R. Zhong et al., Phys. Rev. B 91, 195321 (2015)

Pb_{1-x}Sn_xSe: infrared optical studies

A. Reijnders et al., Phys. Rev B 90, 235144 (2014)
N. Anand et al., Phys. Rev. B 90, 235143 (2014)
X. Xi et al., Phys. Rev. Lett. 113, 096401 (2014)

Pb_{1-x}Sn_xSe: infrared magneto-optical studies

<u>Y. Wang et al., arXiv 1611.04302</u> B.A. Assaf et al., Sci. Rep. <u>6</u>, 20323 (2016)

III. Atomic steps as new 1D topological systems

Atomic steps as new 1D topological systems

RESEARCH | REPORTS

TOPOLOGICAL MATTER

Robust spin-polarized midgap states at step edges of topological crystalline insulators

Paolo Sessi,^{1*} Domenico Di Sante,² Andrzej Szczerbakow,³ Florian Glott,¹ Stefan Wilfert,¹ Henrik Schmidt,¹ Thomas Bathon,¹ Piotr Dziawa,³ Martin Greiter,² Titus Neupert,⁴ Giorgio Sangiovanni,² Tomasz Story,³ Ronny Thomale,² Matthias Bode^{1,5}

- Experiment STM/STS: Würzburg University (EP2)
- Theory: Würzburg University (TP1) and Zürich University
- Monocrystals (growth and characterization): IP PAS, Warsaw

STM – conductance spectroscopy

Pb_{1-x}Sn_xSe - STM spectroscopy Landau quantization

I. Zeljkovic, ...V. Madhavan, Nature Physics 10, 572 (2014);

Electronic structure of Pb_{1-x}Sn_xSe (001) with atomic steps

P. Sessi et al., Science 354 (6317), 1269 (2016)

Topological materials - summary

- Metalic surface (or edge) states with linear energy dispersion (massless Dirac fermions).
- Inverted band structure: relativistic effects (spin-orbit coupling, Darwin term).
- Topological protection, suppression of backscattering.
- Spin polarization, helical states, spin-momentum locking.
- Bandgap origin and symmetry protection based classification:
- topological insulators (TRS),
- topological crystalline insulators (mirror-plane symmetry): IV-VI semiconductors SnTe , (Pb,Sn)Te and (Pb,Sn)Se