Ballistic effects in hBN-encapsulated graphene and moiré superlattice minibands in G/hBN heterostructures

### **Vladimir Falko**











# Graphene: gapless semiconductor with Dirac electrons

$$\hat{H} = v\vec{\sigma}\cdot\vec{p}$$



hBN ('white graphene') sp<sup>2</sup> – bonded insulator with a large band gap,  $\Delta$  >5eV

$$\hat{H} = \Delta \sigma_z + v' \vec{\sigma} \cdot \vec{p}$$

Graphene at its best: ballistic electrons in graphene (G) encapsulated in van der Waals heterostructures with hexagonal boron nitride (hBN)

0

 Moiré superlattice in graphene – hBN heterostructures, moiré minibands, and Zak-Brown magnetic minibands



### hBN-encapsulated graphene: multi-µm ballistic transport proven by transverse electron focusing

 $\frac{\pi L}{2}$ 



Transverse magnetic focusing (caustics of skipping orbits) of ballistic electrons



Taychatanapat, Watanabe, Taniguchi, Jarillo-Herrero - Nature Phys 9, 225 (2013)

Lee, Wallbank, Gallagher, Watanabe, Taniguchi, Fal'ko, Goldhaber-Gordon - Science 353, 1526 (2016)





# Fabry-Perot oscillations of I(V) and critical supercurrent in hBN/G/hBN with S-leads



Ben-Shalom, Zhu, Fal'ko, Mishchenko, Kretinin, Novoselov, Woods, Watanabe, Taniguchi, Geim, Prance Nature Physics 12, 318 (2015)

# QT devices using ballistic SGS



Calado, Goswami, Nanda, Diez, Akhmerov, Watanabe, Taniguchi, Klapwijk, Vandersypen Nature Nanotechnology 10, 761 (2015)



Lancaster graphene FET-based SQUID: supercurrent can be switched on/off fast using electrostatic gates:





### quantum device for magnetic field measurement

### **PN** junctions



#### Tunneling PN junctions in semiconductors

#### Ballistic PN junction in graphene is highly transparent for Dirac electrons



Cheianov, VF - PR B 74, 041403 (2006) Katsnelson, Novoselov, Geim, Nature Physics 2, 620 (2006)



Cheianov, Fal'ko, Altshuler - Science 315, 1252 (2007)

# Veselago lens for electrons in ballistic grapheneusing bipolar PNPl > 2wgraphene transistor



Cheianov, Fal'ko, Altshuler - Science 315, 1252 (2007)



### Negative refraction of Dirac electrons in hBN/G/hBN

nature physics

PUBLISHED ONLINE: 14 SEPTEMBER 2015 | DOI: 10.1038/NPHYS3460

Gil-Ho Lee $^{\dagger}$ , Geon-Hyoung Park and Hu-Jong Lee\*





- Graphene at its best: ballistic electrons in graphene (G) encapsulated in van der Waals heterostructures with hexagonal boron nitride (hBN)
- Moiré superlattice in graphene – hBN heterostructures, moiré minibands, and Zak-Brown magnetic minibands



Xue, Sanchez-Yamagishi, Bulmash, Jacquod, Deshpande, Watanabe, Taniguchi, Jarillo-Herrero, LeRoy - Nature Mat 10, 282 (2011) \_ misalignment

lattice mismatch  $\delta = 0.018$  for non-strained graphene on hBN

# Long-period moiré patterns are generic for all G/hBN heterostructures, grown and mechanically transferred

# Both graphene and hBN lattices are honeycomb,



hence, moiré superlattice is hexagonal



$$\vec{b}_n = \vec{G}_n^G - \vec{G}_n^{hBN}$$



Due to a separation between layers larger than distance between atoms within the layers, moiré perturbation is dominated by the simplest spatial harmonics

Lopes dos Santos, Peres, Castro Neto - PRL 99, 256802 (2007) Lopes dos Santos, Peres, Castro Neto - arXiv:1202.1088 (2012) Bistritzer, MacDonald - PRB 81, 245412 (2010) Kindermann, Uchoa, Miller - Phys. Rev. B 86, 115415 (2012)

$$\vec{b}_{0} = \vec{b}_{G} - \vec{b}_{BN} = \begin{bmatrix} 1 - (1 + \delta)^{-1} \hat{R}_{\theta} \end{bmatrix} \begin{pmatrix} \frac{4\pi}{3a} \\ 0 \end{pmatrix}$$
$$|\vec{b}_{0}| \equiv b \approx \frac{3\pi}{4a} \sqrt{\delta^{2} + \theta^{2}}$$
$$|\text{attice mismatch} \qquad \text{misalignment}$$
$$1.8\% \text{ for G/hBN} \qquad <2^{0}$$







### electrons in G/hBN moiré superlattices



$$a_z > a \implies only \ \vec{b}_m = \vec{G}_m^G - \vec{G}_m^{hBN} \longrightarrow \delta H_{moire}$$

electrostatic modulation

sublattice asymmetry

hopping between sublattices, leading to a pseudomagnetic field

$$\hat{H} = vp \cdot \sigma + u_0 vbf_1(r) + u_3 vbf_2(r)\sigma_3\tau_3 + u_1 v\left[l_z \times \nabla f_2(r)\right] \cdot \sigma\tau_3$$
 inversion sympletic constraints in the sympletic constraints of the symplet

mmetric

+





Wallbank, Patel, Mucha-Kruczynski, Geim, Fal'ko - PRB 87, 245408 (2013)

#### **Optical signature of moiré minibands**







Shi, Jin, Yang, Ju, Horng, Lu, Bechtel, Martin, Fu, Wu, Watanabe, Taniguchi, Zhang, Bai, Wang, Zhang, Wang arXiv:1405.2032



Ponomarenko, Gorbachev, Elias, Yu, Patel, Mayorov, Woods, Wallbank Mucha-Kruczynski, Piot, Potemski, Grigorieva, Guinea, Novoselov, Fal'ko, Geim - Nature 497, 594 (2013) Manifestation of minibands in magneto-transport and capacitance spectroscopy



Yu, Gorbachev, Tu, Kretinin, Cao, Jalil, Withers, Ponomarenko, Chen, Piot, Potemski, Elias, Watanabe, Taniguchi, Grigorieva, Novoselov, Fal'ko, Geim, Mishchenko Nature Physics 10, 525 (2014)

# Transverse magnetic focusing of electrons in moiré minibands in almost aligned G/hBN



Lee, Wallbank, Gallagher, Watanabe, Taniguchi, Fal'ko, Goldhaber-Gordon - Science 353, 1526 (2016)

# Transverse magnetic focusing of electrons in moiré minibands in almost aligned G/hBN



Lee, Wallbank, Gallagher, Watanabe, Taniguchi, Fal'ko, Goldhaber-Gordon - Science 353, 1526 (2016)

### Landau levels of Dirac electrons in a magnetic field



Should be the same for the secondary Dirac electrons at the edge of the 1<sup>st</sup> moiré miniband



# Magneto-transport in oriented graphene-BN heterostructures



Ponomarenko, Gorbachev, Elias, Yu, Patel, Mayorov, Woods, Wallbank, Mucha-Kruczynski, Piot, Potemski, Grigorieva, Guinea, Novoselov, Fal'ko, Geim Nature 497, 594 (2013)

#### **Magneto-capacitance**

Yu, Gorbachev, Tu, Kretinin, Cao, Jalil, Withers, Ponomarenko, Chen, Piot, Potemski, Elias, Watanabe, Taniguchi, Grigorieva, Novoselov, Fal'ko, Geim, Mishchenko Nature Physics 10, 525 (2014)



Brown, PR 133, A1038 (1964); Zak, PR 134, A1602 & A1607 (1964)



$$\phi \equiv BS = \frac{p}{q}\phi_0, \ \phi_0 = \frac{h}{e}$$

Magnetic minibands at rational values of magnetic field flux per super-cell

### 'Magnetic lattice' with a $q^2$ times bigger effective supercell and $q^2$ times smaller mini Brillouin zone.

Each state in this mini Brillouin zone is *q* times degenerate.

Known as fractal 'Hofstadter butterfly' spectrum.



Example for the tightbinding model on a square lattice

Hofstadter PRB 14, 2239 (1976)



## Zak-Brown magnetic minibands



 $G_{qM} = \{\Theta_R, R = qm_1\vec{a}_1 + qm_2\vec{a}_2\} \subset G_M$ 



Chen, Wallbank, Patel, Mucha-Kruczynski, McCann, Fal'ko - PRB 89, 075401 (2014)

### Low-T magneto-transport in aligned G/BN heterostructures

What is left of such oscillations at high T>> $\Delta$ ?

gaps matter



Ponomarenko, Gorbachev, Elias, Yu, Patel, Mayorov, Woods, Wallbank, Mucha-Kruczynski, Piot, Potemski, Grigorieva, Guinea, Novoselov, VF, Geim - Nature 497, 594 (2013)

### High-temperature (T>>Δ) Brown-Zak oscillations

Hierarchy of Brown-Zak minibands:

widest minibands at 1/N fractions; then at 2/(2N+1)

all others are much smaller.



### **High-temperature Brown-Zak oscillations**

$$50 \div 200K >> \varepsilon_{band}, \hbar \omega_{c}$$

• calculated





Kumar, Ponomarenko, Geim, Chen, Fal'ko (2016)

### Magnetic minibands at $\phi = \frac{p}{q} \phi_0$ - gapped Dirac electrons



Chen, Wallbank, Patel, Mucha-Kruczynski, McCann, Fal'ko – PRB 89, 075401 (2014)

### Capacitance spectroscopy of gaps between magnetic minibands

Yu, Gorbachev, Tu, Kretinin, Cao, Jalil, Withers, Ponomarenko, Chen, Piot, Potemski, Elias, Watanabe, Taniguchi, Grigorieva, Novoselov, VF, Geim, Mishchenko - Nature Physics 10, 525 (2014)



 Ballistic electrons in hBN/G/hBN heterostructures
Zak-Brown minibands in g/hBN moiré superlattices: many different 2D metals in one material

#### Xi Chen (NGI) John Wallbank (NGI) Marcin Mucha-Kruczynski (Bath)

Andre Geim (NGI) Konstantin Novoselov (NGI) Roman Gorbachev (NGI) Marek Potemski (CNRS-Grenoble) David Goldhaber-Gordon (Stanford) Takashi Taniguchi (NIMS)