Change institution
Advanced Nano and Microtechnologies Advanced Materials Structural Biology Gen. and Prot. of Plant Systems Molecular Medicine Brain and Mind Research Molecular Vet. Medicine

Molecular Oncology - Solid Cancer - Ondřej Slabý

Research Group Leader
Researcher ID
Phone: +420 54949 6876
E-mail: ,
Office:

Research areas

  • Biology of the non-coding RNAs (microRNA, T-UCR, LncRNA, pyknons, etc.) and their involvement in carcinogenesis
  • Significance of non-coding RNAs in solid cancer pathogenesis and identification of new therapeutic targets
  • Application of non-coding RNAs in solid cancer diagnostics and individualization of therapy in cancer patients

Main objectives

  1. Introduction of high-throughput analyses (whole genome sequencing and transcriptome profiling) of human genome mainly focused on non-coding RNAs. Utilization of these technologies in medicine and development of diagnostic tests based on high-throughput methods.
  2. Comprehensive analysis of non-coding RNAs (expression, SNPs, methylation profiles, according to Objective 1) in solid cancer (mainly colorectal cancer, renal cell carcinoma, esophageal cancer, breast cancer, lung cancer and glioblastoma multiforme). Integration of experimental data with clinico-pathological characteristics of patients aiming identification of potential susceptibility, diagnostic, prognostic, and predictive biomarkers, as well as new therapeutic targets in tumor tissue or patient’s body fluids. Design and coordination of large multi-centric validation studies.
  3. Detailed phenotypic characterization (e.g. validation of predicted targets of miRNAs and their integration into signalling pathways) and functional evaluation (proliferation, cell cycle, apoptosis, invasiveness, etc.) of non-coding RNAs suspected to be involved in carcinogenesis or cancer outcome (Objective 2) in vitro in a relevant cell line models. Studies examining oncogenic or tumor-suppressive function of particular non-coding RNA in vivo, with subsequent pharmacological analysis evaluating usage of this RNA as therapeutic target.
  4. Formulation and design of recommendations for potential implementation of novel biomarkers (according to Objectives 2 and 3) to clinical management of solid cancer patients leading to higher level of individualization and better therapeutic outcomes. Development and technological transfer of new targeted therapeutic strategies in solid cancer.

Content of research

According to the central dogma of molecular biology, it has been postulated that vast majority of genetic information encoding the biologic form and phenotype is rendered by proteins. Employing whole-genome analytical approaches and next-generation sequencing technologies (ENCODE Project), it has been observed that at least 90% of the human genome is actively transcribed. Although initially argued to be spurious transcriptional noise or accumulated evolutionary debris arising from the early assembly of genes and/or the insertion of mobile genetic elements, recent evidence suggests that such a “dark matter” of the genome, i.e. the non-coding RNAs (ncRNAs) may play the major biological roles in cellular development, physiology and pathologies.
NcRNAs could be grouped into two major classes – small ncRNAs and long ncRNAs. LncRNA are transcripts sized in a range of 200 nt up to 100 kb lacking open reading frames. LncRNA expression levels appear to be lower than protein-coding genes, and some lncRNAs are preferentially expressed in specific tissues. The small number of characterized human lncRNAs have been associated with a spectrum of biological processes, for example, epigenetics, alternative splicing, nuclear import, as structural components, as precursors to small RNAs and even as regulators of mRNA decay. Furthermore, accumulating reports of mis-regulated lncRNA (HOTAIR, MALAT1, HULC, T-UCRs, etc.) expressions across numerous cancer types suggest that aberrant lncRNA expression may be an important contributor to tumorigenesis. Small ncRNAs are represented by a broad range of known and newly discovered RNA species, with many being associated with 5’ or 3’ regions of coding genes. This class includes the well-documented miRNAs, and siRNAs, and most of them significantly extended the concept of molecular carcinogenesis, and recently are subject of the intensive translational research in this field.
Based on commonly accepted definition by Hanahan and Weinberg, the tumor is characterized by 6 features: self-sufficiency in growth signals, insensitivity to growth inhibitory signals, evasion of apoptosis, limitless replicative potential, sustained angiogenesis and tissue invasion and metastasis. It has been repeatedly confirmed that miRNAs may modify each of these six characteristics by multilevel targeting either oncogenes or tumor suppressors. For details see Vogelstein model of carcinogenesis in colorectal cancer.

In our research we are mainly focused on colorectal cancer (CRC), significance of ncRNAs in its pathogenesis, and potential utilization of ncRNAs as biomarkers or even therapeutic targets. One of our projects is aiming at new molecular markers enabling the response prediction to anti-EGFR therapy in patients with metastatic CRC (mCRC) with wild type KRAS. Such markers could possibly lead to better understanding of molecular mechanisms of resistance, but also to individualization of therapy and therefore achievement of better therapeutical results and higher quality of life in patients with metastatic colorectal cancer. Furthermore, we are focused on identification of new biomarkers in blood serum. The rationale of our project is to build diagnostic panel of microRNAs enabling early detection of CRC in asymptomatic patients for screening purposes or monitoring of CRC patients with hereditary syndroms, as well as sensitive detection of disease progression in follow-up of CRC patients. We study circulating miRNAs as potential biomarkers also in renal cell carcinoma and pancreatic cancer. Moreover, we are looking for miRNA based diagnostic panel which will enable improved stratification of patients with Barrett esophageus (BE) to subgroups according to their individual risk of progression to esophageal adenocarcinoma, particularly it will enable the „high-risk“ subgroups detection. More accurate risk prediction in BE patients enable more rationalized monitoring design and early detection of progression to higher dysplastic grade or EAC. Another field of interest of our research group is concentrated on study of miRNAs and genes associated with process of epithelial-to-mesenchymal transition. These miRNAs and genes could serve as potential markers of risk prediction and early detection of metastatic disease in renal cell carcinoma patients.  Regarding glioblastoma multiforme (GBM), the main goal of our project is to extend knowledge about molecular mechanisms involved in glioblastoma carcinogenesis and invasivness by analysis of miRNA expression profiles in tumors and use our findings for prediction of therapy response in patients with glioblastoma. Furthermore, we would like to contribute to the molecular characterization of glioblastoma stem cells (GSCs) which are involved in resistance to the therapy and relapse of GBM. In this project, miRNA expression profiles of GSCs and non-GSCs will be identified, and furthermore, the obtained data will be used for development of the predictive miRNA panel that will enable prediction of therapy response and prognosis, and development of new, miRNA-based therapies in GBM. 

list / cards

Name and position

E-mail

Phone

Ondřej Slabý, Ph.D.
Research Group Leader
+420 54949 6876
Marek Svoboda, Ph.D.
Researcher
+420 54949 6899
Elleni Ponechal Michu
Specialist
+420 54949 7574
Jaroslav Juráček
PhD student
Jiří Šána, Ph.D.
Researcher
+420 54949 5246
Prof. Zdeněk Kala
docent, přednosta kliniky
+420 532 233 105
Tomáš Grolich, Ph.D.
odborný asistent
+420 532 232 961
Parwez Ahmad
PhD student
+420 54949 3559
Kamila Součková, Ph.D.
senior researcher
+420 54949 5371
Tomáš Loja, Ph.D.
Researcher
+420 54949 7455
Petra Vychytilová
PhD student
+420 54949 3559
Táňa Macháčková
odborná pracovnice - PhD student
Marek Večeřa
odborný pracovník - PhD student
Hana Nosková
PhD student
+420 54949 6295
Martina Vodinská
odborná pracovnice
+420 54949 5371
Martina Lojová, Ph.D.
Researcher
+420 54949 3559
Jitka Vaňáčková, Ph.D.
PhD student
+420 54949 5681
Natalia Anna Gabło
odborná pracovnice
Soňa Adamcová
odborná pracovnice
Igor Kiss
odborný asistent
Anna Konieczna
odborná pracovnice ve výzkumu - postdoc
Zuzana Fečková
laborantka
Júlia Kováčová
Pregraduate student
Ahmad Parwez
Dominika Brchnelová
Lenka Radová, Ph.D.
senior researcher
+420 54949 5841
Petra Vrbická
chovatelka laboratorních zvířat

SELECTED PUBLICATIONS

2017

  • BENCUROVA, P; BALOUN, J; MUSILOVA, K; RADOVA, L; TICHY, B; PAIL, M; ZEMAN, M; BRICHTOVA, E; HERMANOVA, M; POSPISILOVA, S; MRAZ, M; BRAZDIL, M, 2017:MicroRNA and mesial temporal lobe epilepsy with hippocampal sclerosis: Whole miRNome profiling of human hippocampus. EPILEPSIA 58 (10), p. 1782 - 1793.
  • CAPOOR, M N; RUZICKA, F; SCMITZ, J E; JAMES, GA; MACHACKOVA, T; JANCALEK, R; SMRCKA, M; LIPINA, R; AHMED F S; ALAMIN, T; ANAND, N; BAIRD, J C; BHATIA, N; DEMIR-DEVIREN, S; EASTLACK, R.K.; FISHER, S; GARFIN, S R; GOGIA J S; GOKASLAN Z L; KUO C C, LEE Y, MAVROMMATIS K, MICHU E, NOSKOVA H, RAZ A, SANA J, SHAMIE A N, STEWART P S, STONEMETZ J L, WANG J C, WITHAM T F; COSCIA M F, BIRKENMAIER CH; FISCHETTI V A; SLABY, O., 2017:Propionibacterium acnes biofilm is present in intervertebral discs of patients undergoing microdiscectomy. PLoS One 4 (12)
  • FEDORKO, M; JURACEK, J; STANIK, M; SVOBODA, M; POPRACH, A; BUCHLER, T; PACIKL, D; DOLEZEL, J; SLABY, O, 2017:Detection of let-7 miRNAs in urine supernatant as potential diagnostic approach in non-metastatic clear-cell renal cell carcinoma. BIOCHEMIA MEDICA 27 (2), p. 411 - 417.
  • KANTOROVA, B; MALCIKOVA, J; BRAZDILOVA, K; BORSKY, M; PLEVOVA, K; SMARDOVA, J; RADOVA, L; TOM, N; TRBUSEK, M; DIVISKOVA, E; FRANCOVA, HS; NAVRKALOVA, V; DOUBEK, M; BRYCHTOVA, Y; MAYER, J; POSPISILOVA, S, 2017:Single cell analysis revealed a coexistence of NOTCH1 and TP53 mutations within the same cancer cells in chronic lymphocytic leukaemia patients. BRITISH JOURNAL OF HAEMATOLOGY 178 (6), p. 979 - 982.

2016

  • BODISOVA, K; KLEMENT, R; GALUSEK, D; POUCHLY, V; DRDLIK, D; MACA, K, 2016:Luminescent rare-earth-doped transparent alumina ceramics. JOURNAL OF THE EUROPEAN CERAMIC SOCIETY 36 (12), p. 2975 - 2980.
  • BUCKOVA, H; NOSKOVA, H; BORSKA, R; REBLOVA, K; PINKOVA, B; ZAPLETALOVA, E; KOPECKOVA, L; HORKY, O; NEMECKOVA, J; GAILLYOVA, R; NAGY, Z; VESELY, K; HERMANOVA, M; STEHLIKOVA, K; FAJKUSOVA, L, 2016:Autosomal recessive congenital ichthyoses in the Czech Republic. BRITISH JOURNAL OF DERMATOLOGY 174 (2), p. 405 - 407.
  • CAPOOR, MN; RUZICKA, F; MACHACKOVA, T; JANCALEK, R; SMRCKA, M; SCHMITZ, JE; HERMANOVA, M; SANA, J; MICHU, E; BAIRD, JC; AHMED, FS; MACA, K; LIPINA, R; ALAMIN, TF; COSCIA, MF; STONEMETZ, JL; WITHAM, T; EHRLICH, GD; GOKASLAN, ZL; MAVROMMATIS, K; BIRKENMAIER, C; FISCHETTI, VA; SLABY, O, 2016:Prevalence of Propionibacterium acnes in Intervertebral Discs of Patients Undergoing Lumbar Microdiscectomy: A Prospective Cross-Sectional Study. PLOS ONE 11 (8)
  • DVORAKOVA, P; KYR, M; NEKULOVA, M; JEZOVA, M; PAVELKA, Z; SLABY, O; STERBA, J; VOJTESEK, B; HERNYCHOVA, L; ZITTERBART, K, 2016:QUANTITATIVE PROTEOMIC PROFILING IN MEDULLOBLASTOMA RECAPITULATES SUBGROUPING BASED ON TRANSCRIPTIONAL PROFILES. NEURO-ONCOLOGY 18 , p. 117 - 117.
  • FILIPOVIC, S; OBRADOVIC, N; PAVLOVIC, VB; MITRIC, M; DORDEVIC, A; KACHLIK, M; MACA, K, 2016:Effect of consolidation parameters on structural, microstructural and electrical properties of magnesium titanate ceramics. CERAMICS INTERNATIONAL 42 (8), p. 9887 - 9898.
  • KLEMENT, GL; ARKUN, K; VALIK, D; ROFFIDAL, T; HASHEMI, A; KLEMENT, C; CARMASSI, P; RIETMAN, E; SLABY, O; MAZANEK, P; MUDRY, P; KOVACS, G; KISS, C; NORGA, K; KONSTANTINOV, D; ANDRE, N; SLAVC, I; VAN DEN BERG, H; KOLENOVA, A; KREN, L; TUMA, J; SKOTAKOVA, J; STERBA, J, 2016:Future paradigms for precision oncology. ONCOTARGET 7 (29), p. 46813 - 46831.
  • MERHAUTOVA, J; DEMLOVA, R; SLABY, O, 2016:MicroRNA-Based Therapy in Animal Models of Selected Gastrointestinal Cancers. FRONTIERS IN PHARMACOLOGY 7
  • MLCOCHOVA, H; MACHACKOVA, T; RABIEN, A; RADOVA, L; FABIAN, P; ILIEV, R; SLABA, K; POPRACH, A; KILIC, E; STANIK, M; REDOVA-LOJOVA, M; SVOBODA, M; DOLEZEL, J; VYZULA, R; JUNG, K; SLABY, O, 2016:Epithelial-mesenchymal transition-associated microRNA/mRNA signature is linked to metastasis and prognosis in clear-cell renal cell carcinoma. SCIENTIFIC REPORTS 6
  • NEMECEK, R; BERKOVCOVA, J; SLABY, O; SVOBODA, M, 2016:Next generation sequencing mutational analysis of primary and metastatic colorectal cancer samples in relationship to efficacy of cetuximab-based therapy. ANNALS OF ONCOLOGY 27 , p. 3 - 3.
  • OBRADOVIC, N; FILIPOVIC, S; DORDEVIC, N; KOSANOVIC, D; MARKOVIC, S; PAVOVIC, V; OLCAN, D; DJORDJEVIC, A; KACHLIK, M; MACA, K, 2016:Effects of mechanical activation and two-step sintering on the structure and electrical properties of cordierite-based ceramics. CERAMICS INTERNATIONAL 42 (12), p. 13909 - 13918.
  • SHYAMSUNDER, P; ESNER, M; BARVALIA, M; WU, YJ; LOJA, T; BOON, HB; LLEONART, ME; VERMA, RS; KREJCI, L; LYAKHOVICH, A, 2016:Impaired mitophagy in Fanconi anemia is dependent on mitochondrial fission. ONCOTARGET 7 (36), p. 58065 - 58074.
  • STOKLASOVA, M; KUCHAROVA, H; BURDOVA, A; DREVOJANKOVA, B; SABLATUROVA, T; STRNKOVA, A; TRUHLIKOVA, L; YVONA, B; PANOVSKA, A; PLEVOVA, K; OLTOVA, A; RYTIKOVA, N; PETRICOVA, N; ADAMOVA, D; HEINZOVA, V; ZYGULOVA, I; LASKA, J; ZUCHNICKA, J; BODZASOVA, C; DURAS, J; URBANKOVA, M; JEHLIKOVA, Z; SLEZAK, P; MACUROVA, J; JANEK, D; BOGOCZOVA, E; WROBEL, M; KLODOVA, D; ZETKOVA, Z; BREJCHA, M, 2016:RARE RECURRENT CHROMOSOMAL ABNORMALITIES IN CLL DETECTED BY CONVENTIONAL CYTOGENETICS AFTER STIMULATION WITH CPG-ODN & IL-2 AND FISH. HAEMATOLOGICA 101 , p. 717 - 717.
  • THORENOOR, N; FALTEJSKOVA-VYCHYTILOVA, P; HOMBACH, S; MLCOCHOVA, J; KRETZ, M; SVOBODA, M; SLABY, O, 2016:Long non-coding RNA ZFAS1 interacts with CDK1 and is involved in p53-dependent cell cycle control and apoptosis in colorectal cancer. ONCOTARGET 7 (1), p. 622 - 637.
  • VYCHYTILOVA-FALTEJSKOVA, P; RADOVA, L; SACHLOVA, M; KOSAROVA, Z; SLABA, K; FABIAN, P; GROLICH, T; PROCHAZKA, V; KALA, Z; SVOBODA, M; KISS, I; VYZULA, R; SLABY, O, 2016:Serum-based microRNA signatures in early diagnosis and prognosis prediction of colon cancer. CARCINOGENESIS 37 (10), p. 941 - 950.
  • ZABRADY, K; ADAMUS, M; VONDROVA, L; LIAO, C; SKOUPILOVA, H; NOVAKOVA, M; JURCISINOVA, L; ALT, A; OLIVER, AW; LEHMANN, AR; PALECEK, JJ, 2016:Chromatin association of the SMC5/6 complex is dependent on binding of its NSE3 subunit to DNA. NUCLEIC ACIDS RESEARCH 44 (3), p. 1064 - 1079.

2015

  • BABULA, P; KLEJDUS, B; KOVACIK, J; HEDBAVNY, J; HLAVNA, M, 2015:Lanthanum rather than cadmium induces oxidative stress and metabolite changes in Hypericum perforatum. JOURNAL OF HAZARDOUS MATERIALS 286 , p. 334 - 342.
  • BESSE, L; SEDLARIKOVA, L; KRYUKOV, F; NEKVINDOVA, J; RADOVA, L; SLABY, O; KUGLIK, P; ALMASI, M; PENKA, M; KREJCI, M; ADAM, Z; POUR, L; SEVCIKOVA, S; HAJEK, R, 2015:Circulating Serum MicroRNA-130a as a Novel Putative Marker of Extramedullary Myeloma. PLOS ONE 10 (9)
  • DADAKOVA, K; HAVELKOVA, M; KURKOVA, B; TLOLKOVA, I; KASPAROVSKY, T; ZDRAHAL, Z; LOCHMAN, J, 2015:Proteome and transcript analysis of Vitis vinifera cell cultures subjected to Botrytis cinerea infection. JOURNAL OF PROTEOMICS 119 , p. 143 - 153.
  • KOZAKOVA, L; VONDROVA, L; STEJSKAL, K; CHARALABOUS, P; KOLESAR, P; LEHMANN, AR; ULDRIJAN, S; SANDERSON, CM; ZDRAHAL, Z; PALECEK, JJ, 2015:The melanoma-associated antigen 1 (MAGEA1) protein stimulates the E3 ubiquitin-ligase activity of TRIM31 within a TRIM31-MAGEA1-NSE4 complex. CELL CYCLE 14 (6), p. 920 - 930.
  • MLCOCHOVA, J; FALTEJSKOVA-VYCHYTILOVA, P; FERRACIN, M; ZAGATTI, B; RADOVA, L; SVOBODA, M; NEMECEK, R; JOHN, S; KISS, I; VYZULA, R; NEGRINI, M; SLABY, O, 2015:MicroRNA expression profiling identifies miR-31-5p/3p as associated with time to progression in wild-type RAS metastatic colorectal cancer treated with cetuximab. ONCOTARGET 6 (36), p. 38695 - 38704.
  • PALECEK, E; TKAC, J; BARTOSIK, M; BERTOK, T; OSTATNA, V; PALECEK, J, 2015:Electrochemistry of Nonconjugated Proteins and Glycoproteins. Toward Sensors for Biomedicine and Glycomics. CHEMICAL REVIEWS , p. 20452045 - 2108.

2014

  • SANA, J; RADOVA, L; LAKOMY, R; KREN, L; FADRUS, P; SMRCKA, M; BESSE, A; NEKVINDOVA, J; HERMANOVA, M; JANCALEK, R; SVOBODA, M; HAJDUCH, M; SLAMPA, P; VYZULA, R; SLABY, O, 2014:Risk Score based on microRNA expression signature is independent prognostic classifier of glioblastoma patients. CARCINOGENESIS 35 (12), p. 2756 - 2762.

2012

  • GUERINEAU, M; KRIZ, Z; KOZAKOVA, L; BEDNAROVA, K; JANOS, P; PALECEK, J, 2012:Analysis of the Nse3/MAGE-Binding Domain of the Nse4/EID Family Proteins. PLOS ONE 7 (4)
  • RAJA, KRM; KUBICZKOVA, L; RIHOVA, L; PISKACEK, M; VSIANSKA, P; HEZOVA, R; POUR, L; HAJEK, R, 2012:Functionally Suppressive CD8 T Regulatory Cells Are Increased in Patients with Multiple Myeloma: A Cause for Immune Impairment. PLOS ONE 7 (11), p. e49446 - e49455.

2011

  • HUDSON, JJR; BEDNAROVA, K; KOZAKOVA, L; LIAO, CY; GUERINEAU, M; COLNAGHI, R; VIDOT, S; MAREK, J; BATHULA, SR; LEHMANN, AR; PALECEK, J, 2011:Interactions between the Nse3 and Nse4 Components of the SMC5-6 Complex Identify Evolutionarily Conserved Interactions between MAGE and EID Families. PLOS ONE 6 (2)

GRANTY

  • Identification and functional characterization of microRNAs with predictive significance in patients with glioblastoma (NT/11214), Ministry of Health - Ministry of Health's Departmental Research and Development Programme III (2010-2015), 2010 - 2013
  • Development of diagnostic panel of circulating microRNAs for non-invasive early diagnostics and follow-up of colorectal cancer patients (NT/13549), Ministry of Health - Ministry of Health's Departmental Research and Development Programme III (2010-2015), 2012 - 2015
  • MicroRNA analysis in glioblastoma stem cells: prediction of therapy response and identification of new therapeutic targets in glioblastoma patients (NT/13514), Ministry of Health - Ministry of Health's Departmental Research and Development Programme III (2010-2015), 2012 - 2015
  • Analysis of EGFR signalling and microRNA expression profiles in prediction of response to anti-EGFR (NT/13860), Ministry of Health - Ministry of Health's Departmental Research and Development Programme III (2010-2015), 2012 - 2015
  • Complex characterization of molecular genetic changes in glioblastoma multiforme and its relapses, and evaluation of their possible significance in oncologic therapy and therapy effect (NT/13581), Ministry of Health - Ministry of Health's Departmental Research and Development Programme III (2010-2015), 2012 - 2015
  • Development of microRNA diagnostic panel for identification Barret esophagus patients at high-risk of progression to adenocarcinoma (NT13585), Ministry of Health - Ministry of Health's Departmental Research and Development Programme III (2010-2015), 2012 - 2014
More CEITEC News ...
Dr. Ondrej Hovorka: Models of magnetic nanoparticles for biomedical applications

29. ledna 2018 9:46

Dr. Ondrej Hovorka: Models of magnetic nanoparticles for biomedical…

LECTURE: Dr. Ondrej Hovorka: Models of magnetic nanoparticles for biomedical applications

Advanced Materials and Nanotechnology Seminar Series 2018: Dr Andriy Marko

25. ledna 2018 18:21

Advanced Materials and Nanotechnology Seminar Series 2018: Dr Andriy…

WHEN: 30. 01. 2018 WHERE: CEITEC BUT, Purkynova 123, large meeting room SPEAKER: Dr Andriy Marko TALK: Advances in PELDOR…